PředmětyPředměty(verze: 875)
Předmět, akademický rok 2020/2021
  
Matematická analýza II - NMAF052
Anglický název: Mathematical Analysis II
Zajišťuje: Kabinet výuky obecné fyziky (32-KVOF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2020
Semestr: letní
E-Kredity: 10
Rozsah, examinace: letní s.:4/3 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: RNDr. Dušan Pokorný, Ph.D.
Třída: Fyzika
Kategorizace předmětu: Fyzika > Matematika pro fyziky
Neslučitelnost : NOFY152
Záměnnost : NOFY152
N//Je neslučitelnost pro: NOFY152
Z//Je záměnnost pro: NOFY152
XP//Ve slož. prerekvizitě: NMAG204, NMAG211, NMAG212, NMMA201, NMMA202, NMMA203, NMMA204, NMMA205, NMNM201
XK//Ve slož. korekvizitě pro: NMSA211
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Poslední úprava: doc. RNDr. Helena Valentová, Ph.D. (10.01.2018)
Druhá část základního kurzu matematické analýzy pro bakalářské studium fyziky. Navazuje na NMAF051.
Cíl předmětu -
Poslední úprava: T_KMA (13.05.2008)

Druhá část základního kursu matematiky pro bakalářské studium fyziky. Navazuje na NMAF051

Podmínky zakončení předmětu
Poslední úprava: doc. Mgr. Milan Pokorný, Ph.D. (18.02.2019)

Podmínkou účasti na zkoušce je udělený zápočet ze cvičení.

Zápočet: Na cvičení se budou psát 3 testy za 60 bodů. Za aktivitu na cvičení můžete získat až 15 bodů. Zápočet dostanete, když získáte celkem alespoň 35 bodů. Zápočtové písemky je možno opravit, proběhne alespoň jedna opravná písemka.

Literatura
Poslední úprava: doc. RNDr. Helena Valentová, Ph.D. (10.01.2018)

Kopáček J.: Matematika pro fyziky I., MATFYZPRESS, 2004

Kopáček J.: Matematika pro fyziky II., MATFYZPRESS, 2003

Kopáček J.: Matematika pro fyziky III., MATFYZPRESS, 2002

Kopáček J. a kol. : Příklady z matematiky pro fyziky I., MATFYZPRESS, 2002

Kopáček J. a kol. : Příklady z matematiky pro fyziky II., MATFYZPRESS, 2003

Jarník J.: Diferenciální počet I, ACADEMIA 1984

Jarník J.: Diferenciální počet II, ACADEMIA 1984

Jarník J.: Integrální počet I, ACADEMIA 1984

Děmidovič V.: Sbírka úloh a cvičení z matematické analýzy, Fragment, 2003

Metody výuky
Poslední úprava: T_KMA (13.05.2008)

přednáška + cvičení

Požadavky ke zkoušce
Poslední úprava: doc. Mgr. Milan Pokorný, Ph.D. (18.02.2019)

Zkouška bude písemná a bude mít 2 části, početní a teoretickou. Student musí úspěšně složit obě části zkoušky.

Požadavky u zkoušky odpovídají sylabu předmětu v rozsahu, který byl probrán na přednášce a cvičení.

Student získá lepší známku ze dvou variant:

a/ výsledek u zkoušky b/ výsledek u zkoušky (2/3 bodů) a výsledek za cvičení (1/3 bodů)

To ale platí pouze v případě, kdy student zkoušku složí, tj. získá alespoň 50% bodů v součtu obou částí zkoušky, přičemž současně získá alespoň 45% bodů z početní části. V případě nerozhodné známky proběhne doplňující ústní zkoušení.

Sylabus -
Poslední úprava: doc. RNDr. Helena Valentová, Ph.D. (10.01.2018)
1. Číselné a mocninné řady
Řady reálných a komplexních čísel: konvergence a divergence, uzávorkování řad, aritmetika konvergentních řad. Řady s nezápornými členy a kritéria jejich konvergence, absolutní a neabsolutní konvergence, kritéria neabsolutní konvergence, přerovnání a násobení řad, Cauchyův součin řad. Elementární poznatky z teorie mocninných řad: poloměr konvergence, kruh konvergence, kritická kružnice. Derivování a integrování mocninných řad. Taylorovy řady.

2. Obyčejné diferenciální rovnice
ODR n-tého řadu, souvislost se systémem ODR 1. řádu, počáteční podmínky, věta o řešitelnosti a o jednoznačnosti řešení.

Lineární rovnice n-tého řádu, homogenní a nehomogenní rovnice, fundamentální systém. Metoda charakteristického polynomu, komplexní a reálný FS, případ vícenásobných kořenů, speciální pravá strana, obecná variace konstant. Bernoulliova rovnice. Wronskián. Speciální typy rovnic vyššího řádu. Eulerova rovnice. Řešení rovnic pomocí Taylorových řad.

3. Funkce více proměnných
Vzdálenost, metrika a metrický prostor. Norma a normovaný prostor. Otevřená množina, okolí, uzavřená množina, uzávěr, vnitřek, hranice. Konvergence, cauchyovskost, úplnost, kompaktnost, separabilita, Banachův a Hilbertův prostor. Kompaktní množiny v metrickém prostoru a v Rn. Limita a spojitost funkcí více proměnných, Heineho věta, spojitost a stejnoměrná spojitost, spojitý obraz kompaktu a důsledky. Kontraktivní zobrazení. Banachova věta o pevném bodu a její aplikace. Parciální derivace, derivace ve směru, gradient. Operátory grad, div, rot. Totální a parciální diferenciály. Diferenciální rovnice ve tvaru totálního diferenciálu, exaktní rovnice, integrační faktor. Složené derivování a záměna proměnných, věta o střední hodnotě pro víc proměnných. Taylorův vzorec a vyšší diferenciály. Extrémy funkcí více proměnných, implicitní funkce, vázané extrémy, Lagrangeovy multiplikátory.

4. Základy variačního počtu v jedné dimenzi
Funkcionál, Gateauxův diferenciál, variace. Euler-Lagrangeovy rovnice, klasická úloha variačního počtu, Lagrangián, kritický bod funkcionálu, extremála funkcionálu.

 
Univerzita Karlova | Informační systém UK