PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Matematická analýza II - NMAF052
Anglický název: Mathematical Analysis II
Zajišťuje: Kabinet výuky obecné fyziky (32-KVOF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018 do 2018
Semestr: letní
E-Kredity: 10
Rozsah, examinace: letní s.:4/3 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: doc. Ing. Branislav Jurčo, CSc., DSc.
doc. Mgr. Milan Pokorný, Ph.D.
Třída: Fyzika
Kategorizace předmětu: Fyzika > Matematika pro fyziky
Záměnnost : NMAF034
Ve slož. prerekvizitě: NMAG204, NMMA201, NMMA202, NMMA203, NMNM201
Anotace -
Poslední úprava: doc. RNDr. Helena Valentová, Ph.D. (10.01.2018)
Druhá část základního kurzu matematiky pro bakalářské studium obecné fyziky. Navazuje na NMAF051
Cíl předmětu -
Poslední úprava: T_KMA (13.05.2008)

Druhá část základního kursu matematiky pro bakalářské studium fyziky. Navazuje na NMAF051

Podmínky zakončení předmětu
Poslední úprava: doc. Mgr. Milan Pokorný, Ph.D. (18.02.2019)

Podmínkou účasti na zkoušce je udělený zápočet ze cvičení.

Zápočet: Na cvičení se budou psát 3 testy za 60 bodů. Za aktivitu na cvičení můžete získat až 15 bodů. Zápočet dostanete, když získáte celkem alespoň 35 bodů. Zápočtové písemky je možno opravit, proběhne alespoň jedna opravná písemka.

Literatura
Poslední úprava: doc. Mgr. Milan Pokorný, Ph.D. (18.02.2019)
  • Černý, R., Pokorný M.: Matematika pro fyziky II. Skripta (dostupná elektronicky)
  • Kopáček J.: Matematika pro fyziky I.,II.,III. Skripta MFF UK
  • Kopáček J. a kol. : Příklady z matematiky pro fyziky I., II. Skripta MFF UK
  • Jarník J.: Diferenciální počet I.,II
  • Jarník J.: Integrální počet I
  • Děmidovič V.: Sbírka úloh a cvičení z matematické analýzy
  • Videozáznamy přednášek
Metody výuky
Poslední úprava: T_KMA (13.05.2008)

přednáška + cvičení

Požadavky ke zkoušce
Poslední úprava: doc. Mgr. Milan Pokorný, Ph.D. (18.02.2019)

Zkouška bude písemná a bude mít 2 části, početní a teoretickou. Student musí úspěšně složit obě části zkoušky.

Požadavky u zkoušky odpovídají sylabu předmětu v rozsahu, který byl probrán na přednášce a cvičení.

Student získá lepší známku ze dvou variant:

a/ výsledek u zkoušky b/ výsledek u zkoušky (2/3 bodů) a výsledek za cvičení (1/3 bodů)

To ale platí pouze v případě, kdy student zkoušku složí, tj. získá alespoň 50% bodů v součtu obou částí zkoušky, přičemž současně získá alespoň 45% bodů z početní části. V případě nerozhodné známky proběhne doplňující ústní zkoušení.

Sylabus -
Poslední úprava: doc. RNDr. Helena Valentová, Ph.D. (10.01.2018)
1. Číselné a mocninné řady
Řady reálných a komplexních čísel: konvergence a divergence, uzávorkování řad, aritmetika konvergentních řad. Řady s nezápornými členy a kritéria jejich konvergence, absolutní a neabsolutní konvergence, kritéria neabsolutní konvergence, přerovnání a násobení řad, Cauchyův součin řad. Elementární poznatky z teorie mocninných řad: poloměr konvergence, kruh konvergence, kritická kružnice. Derivování a integrování mocninných řad. Taylorovy řady.

2. Obyčejné diferenciální rovnice
ODR n-tého řadu, souvislost se systémem ODR 1. řádu, počáteční podmínky, věta o řešitelnosti a o jednoznačnosti řešení.

Lineární rovnice n-tého řádu, homogenní a nehomogenní rovnice, fundamentální systém. Metoda charakteristického polynomu, komplexní a reálný FS, případ vícenásobných kořenů, speciální pravá strana, obecná variace konstant. Bernoulliova rovnice. Wronskián. Speciální typy rovnic vyššího řádu. Eulerova rovnice. Řešení rovnic pomocí Taylorových řad.

3. Funkce více proměnných
Vzdálenost, metrika a metrický prostor. Norma a normovaný prostor. Otevřená množina, okolí, uzavřená množina, uzávěr, vnitřek, hranice. Konvergence, cauchyovskost, úplnost, kompaktnost, separabilita, Banachův a Hilbertův prostor. Kompaktní množiny v metrickém prostoru a v Rn. Limita a spojitost funkcí více proměnných, Heineho věta, spojitost a stejnoměrná spojitost, spojitý obraz kompaktu a důsledky. Kontraktivní zobrazení. Banachova věta o pevném bodu a její aplikace. Parciální derivace, derivace ve směru, gradient. Operátory grad, div, rot. Totální a parciální diferenciály. Diferenciální rovnice ve tvaru totálního diferenciálu, exaktní rovnice, integrační faktor. Složené derivování a záměna proměnných, věta o střední hodnotě pro víc proměnných. Taylorův vzorec a vyšší diferenciály. Extrémy funkcí více proměnných, implicitní funkce, vázané extrémy, Lagrangeovy multiplikátory.

4. Základy variačního počtu v jedné dimenzi
Funkcionál, Gateauxův diferenciál, variace. Euler-Lagrangeovy rovnice, klasická úloha variačního počtu, Lagrangián, kritický bod funkcionálu, extremála funkcionálu.

 
Univerzita Karlova | Informační systém UK