PředmětyPředměty(verze: 875)
Předmět, akademický rok 2020/2021
  
Geometrie 2 - NMAG212
Anglický název: Geometry 2
Zajišťuje: Matematický ústav UK (32-MUUK)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2020
Semestr: letní
E-Kredity: 5
Rozsah, examinace: letní s.:2/2 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: prof. RNDr. Vladimír Souček, DrSc.
Prerekvizity : {Aspoň jedna analýza 1. roč.}
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace
Poslední úprava: doc. Mgr. Petr Kaplický, Ph.D. (29.05.2019)
Povinně volitelný kurs pro programy OM a MO. Úvodní seznámení s diferenciálními formam, Stokesovou větou a geometrií ploch.
Literatura
Poslední úprava: doc. Mgr. Petr Kaplický, Ph.D. (29.05.2019)

M. K. Bennett, Affine and Projective Geometry,Wiley, 1995.

L. Boček, M. Sekanina: Geometrie I, SPN Praha, 1986.

L. Boček, M. Sekanina: Geometrie II, SPN Praha, 1988.

M. Lávička: Geometrie 1 a 2, ZČU Plzeň, 2006.

M. Henle, Modern Geometries: Non-Euclidean, Projective, and Discrete Geometry, Pearson 2001.

R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision, Cambridge University Press, 2004.

Sylabus
Poslední úprava: doc. Mgr. Petr Kaplický, Ph.D. (29.05.2019)

Elementární úvod do vektorového počtu, věta o potenciálu, Greenova a Gaussova věta. Vnější algebra vektorového prostoru, vlastnosti vnějšího násobení, orientace.

Diferenciální formy na otevřených množinách, vnější diferenciál, formy v dimenzi 3.

Přenášení diferenciálních forem pomocí zobrazení, integrační obory.

Stokesova věta pro formy stupně k, Gaussova věta pro oblast s hladkou hranicí.

Regulární a zobecněné plochy, orientace, Stokesova věta pro zobecněné formy. Integrál 1. druhu z funkce přes zobecněnou plochu.

Plochy v R3, 1. fundamentální forma plochy, tečný a normálový prostor plochy.

2. fundamentální forma plochy, normálová, Gaussova a střední křivost.

Hlavní a asymptotické křivky, Gaussovo zobrazení, Christoffelovy symboly.

Geodetická křivost, geodetiky, rovnice pro geodetiky.

Riemannova metrika, modely hyperbolické geometrie.

 
Univerzita Karlova | Informační systém UK