PředmětyPředměty(verze: 875)
Předmět, akademický rok 2020/2021
  
Matematická analýza 4 - NMMA202
Anglický název: Mathematical Analysis 4
Zajišťuje: Katedra matematické analýzy (32-KMA)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2020
Semestr: letní
E-Kredity: 8
Rozsah, examinace: letní s.:4/2 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: nevyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Třída: M Bc. MMIB
M Bc. MMIB > Doporučené volitelné
M Bc. MMIT
M Bc. MMIT > Povinně volitelné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 2. ročník
Kategorizace předmětu: Matematika > Reálná a komplexní analýza
Prerekvizity : {Aspoň jedna analýza 1. roč.}
Korekvizity : NMMA201
Neslučitelnost : NMAA004
Záměnnost : NMAA004, NMMA204
N//Je neslučitelnost pro: NMMA204
P//Je prerekvizitou pro: NMPG349
Z//Je záměnnost pro: NMMA204
XP//Ve slož. prerekvizitě: NMMA301, NMMA331, NMMA342
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Poslední úprava: G_M (16.05.2012)
Čtvrtá část čtyřsemestrálního kursu matematické analýzy pro bakalářský obor Obecná matematika.
Podmínky zakončení předmětu
Poslední úprava: prof. RNDr. Luboš Pick, CSc., DSc. (16.02.2020)

Podrobné požadavky k zápočtu a ke zkoušce jsou uvedeny na webové stránce přednášejícího http://www.karlin.mff.cuni.cz/~pick/

Literatura
Poslední úprava: prof. RNDr. Luboš Pick, CSc., DSc. (16.02.2020)

ZÁKLADNÍ LITERATURA

V. Jarník: Diferenciální počet II

V. Jarník: Integrální počet I,II

L. Zajíček: Vybrané partie z matematické analýzy pro 2. ročník

L. Zajíček: Vybrané úlohy z matematické analýzy pro 1. a 2. ročník

P. Holický, O.Kalenda: Metody řešení vybraných úloh z matematické analýzy pro 2. až 4. semestr

DOPLŇKOVÁ LITERATURA

B. P. Demidovič: Sbírka úloh z matematické analýzy

W. Rudin: Principles of Math. Analysis

J. Lukeš a kol.: Problémy z matematické analýzy (skriptum)

Sylabus
Poslední úprava: prof. RNDr. Luboš Pick, CSc., DSc. (16.02.2020)

19. Metrické prostory III.

a) Množiny husté, řídké, první a druhé kategorie, residuální.

b) Banachova věta o kontrakci, důkaz Picardovy věty.

c) Separabilní prostory, totálně omezené prostory, kompaktní prostory.

d) Souvislé prostory.

20. Křivkový a plošný integrál (parametricky).

a) Hausdorffovy míry.

b) Křivky, plochy a jejich orientace.

c) Gaussova, Greenova a Stokesova věta.

d) Hlavní věta teorie pole.

21. Číselné řady II

a) Přerovnávání řad, Riemannova věta.

b) Cauchyův součin řad, Mertensova věta, Abelova věta.

c) Zobecněné řady.

22. Absolutně spojité funkce, funkce s konečnou variací

23. Fourierovy řady

a) Základy teorie Fourierových řad.

b) Dirichletovo a Fejérovo jádro, Cesarovská sčítatelnost, Fejérova věta.

c) Riemannovo-Lebesgueovo lemma, věta o lokalizaci, Jordanovo-Dirichletovo kritérium, Diniovo kritérium.

 
Univerzita Karlova | Informační systém UK