PředmětyPředměty(verze: 902)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Matematická analýza 1a - NMAA001
Anglický název: Mathematical Analysis 1a
Zajišťuje: Katedra matematické analýzy (32-KMA)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2017
Semestr: zimní
E-Kredity: 8
Rozsah, examinace: zimní s.:4/2 [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst: ne
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Kategorizace předmětu: Matematika > Reálná a komplexní analýza
Neslučitelnost : NMAA071, NMAF033, NMAI008, NUMP001
Záměnnost : NHIU076, NMAA071, NMAF033, NMAI008, NMMA101, NUMP001
Je neslučitelnost pro: NMAA007, NMMA101, NMAA071, NMAA171, NMAI008, NMAA008, NMAI046
Je záměnnost pro: NMAA171, NMAI046, NMAA071, NMMA101, NMAI008
Ve slož. prerekvizitě: NMAA003, NMAA004, NMAA069, NMAA070, NMAA074
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Poslední úprava: T_KMA (20.05.2004)
Reálná čísla. Teorie limit posloupností. Základy teorie řad. Elementární funkce. Základy diferenciálního počtu funkcí jedné proměnné.
Literatura -
Poslední úprava: T_KMA (22.05.2008)
ZÁKLADNÍ LITERATURA

V. Jarník: Diferenciální počet I, Academia 1984

V. Jarník: Diferenciální počet II, Academia 1984

B. P. Děmidovič: Sbírka úloh a cvičení z matematické analýzy, Fragment 2003

J. Milota: Matematická analýza I, 1. a 2. část (skriptum), MFF UK 1978

L. Zajíček: Vybrané úlohy z matematické analýzy pro 1. a 2. ročník, Matfyzpress 2006

DOPLŇKOVÁ LITERATURA

J. Čerych a kol.: Příklady z matematické analýzy V (skriptum), MFF UK 1983

P. Holický, O. Kalenda: Metody řešení vybraných úloh z matematické analýzy pro 2.-4. semestr, Matfyzpress 2006

J. Lukeš a kol.: Problémy z matematické analýzy (skriptum), MFF UK 1982

I. Netuka, J. Veselý: Příklady z matematické analýzy III (skriptum), MFF UK 1977

W. Rudin: Principles of mathematical analysis, McGraw-Hill 1976

Sylabus -
Poslední úprava: T_KMA (25.05.2008)
1. Základní pojmy

a) Množiny, výroky, zobrazení.

b) Axiomatický popis reálných čísel, supremum a infimum.

2. Limita posloupnosti

a) Limita a aritmetické operace, limita a nerovnosti, rozšíření reálné osy.

b) Limita monotónní posloupnosti, Cantorova věta, Bolzano-Cauchyova podmínka.

c) Borelova věta, hromadné hodnoty posloupnosti, limes superior.

3. Číselné řady

a) Konvergence a absolutní konvergence.

b) Cauchyovo, d'Alembertovo a Leibnizovo kritérium.

4. Limita a spojitost funkce

a) Základní věty o limitách, Heineho definice limity, Bolzano-Cauchyova podmínka.

b) Vztah limity a spojitosti, věta o limitě složené funkce, spojitost inverzní funkce.

c) Vlastnosti spojitých funkcí na intervalu: Darbouxova vlastnost, nabývání extrémů, stejnoměrná spojitost.

5. Elementární funkce

a) Polynomy, racionální funkce, n-tá odmocnina.

b) Exponenciála, logaritmus a obecná mocnina.

c) Goniometrické, cyklometrické a hyperbolické funkce.

6. Derivace funkce

a) Definice, derivace jako funkce, diferenciál, tečna.

b) Derivace a aritmetické operace, derivace složené a inverzní funkce.

c) Derivace vyšších řádů, Leibnizova formule.

7. Vyšetřování průběhu funkce

a) Rolleova, Lagrangeova a Cauchyova věta.

b) Vztah derivace, monotonie a konvexity.

c) Extrémy, inflexe, asymptoty.

 
Univerzita Karlova | Informační systém UK