PředmětyPředměty(verze: 809)
Předmět, akademický rok 2017/2018
   Přihlásit přes CAS
Matematika pro fyziky II - NMAF004
Anglický název: Mathematics for Physicists II
Zajišťuje: Kabinet výuky obecné fyziky (32-KVOF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2008
Semestr: letní
E-Kredity: 10
Rozsah, examinace: letní s.:4/3 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Třída: Fyzika
Kategorizace předmětu: Fyzika > Matematika pro fyziky
Korekvizity : NMAF003
Neslučitelnost : NMAA003, NMAA004, NMAI049, NMAI050, NUMP005, NUMP006
Anotace -
Poslední úprava: ()

Základní přednáška z matematiky pro 2. ročník fyziky navazující na Matematickou analýzu (I + II) a Lineární algebru (I+II) .
Literatura
Poslední úprava: RNDr. Pavel Zakouřil, Ph.D. (05.08.2002)

Kopáček, J. a kol.: Matematika pro fyziky, díly III-V, skriptum MFF UK

Sylabus -
Poslední úprava: ()

ÚVOD DO KOMPLEXNÍ ANALÝZY - holomorfní funkce, Cauchy-Riemannovy podmínky - křivkový integrál v komplexní rovině, primitivní funkce - Cauchyova věta, index bodu, Cauchyův vzorec, Liouvilleova věta, Taylorova řada - funkce holomorfní v mezikruží, isolované singularity, Laurentovy řady - reziduum a rezidouvá věta - konformní zobrazení.

FOURIEROVY ŘADY - trigonometrické řady, bodová a stejnoměrná konvergence - ortogonalita, úplnost, Besselova nerovnost, Parsevalova rovnost - kritéria konvergence - prostor L^2, Hilbertův prostor, Fourierovy řady v Hilb. prostoru.

FOURIEROVA A LAPLACEOVA TRANSFORMACE - definice, vlastnosti, početní technika.

 
Univerzita Karlova | Informační systém UK