|
|
|
||
Basic concepts and results of commutative algebra. Introduction to Boolean algebras.
Last update: G_M (02.06.2011)
|
|
||
S.Lang, Algebra, Revised 3rd ed., GTM 211, Springer, New York, 2002. N. Lauritzen, Concrete Abstract Algebra, Cambridge Univ. Press, Cambridge 2003. C. Menini and F. van Oystaeyen: ``Abstract Algebra'', M. Dekker, New York 2004. L.Procházka a kol., Algebra, Academia, Praha, 1990 (in Czech). J.Trlifaj, Algebra II, http://www.karlin.mff.cuni.cz/~trlifaj/NALG027.pdf (in Czech). Last update: T_KA (19.05.2010)
|
|
||
1. Polynomial rings. 1.1 Divisibility for integral domains. Hilbert Basis Theorem . 1.2 UFD's and Euclidean domains, The Euclid algorithm. 1.3 Derivation and multiplicity of roots, perfect fields. 1.4 Symmetric polynomials, the Main Theorem, and its applications. 2. Fields. 2.1 Field extensions of finite degree. 2.2 Splitting fields, their existence and uniqueness, algebraic closure. 2.3 The structure of finite fields. 3. Lattices and Boolean algebras. 3.1 Complete and modular lattices. 3.2 Boolean algebras, structure of finite Boolean algebras. Suplementary topic: Introduction to universal algebra. Terms and free algebras. Last update: T_KA (20.05.2010)
|