SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Linear Algebra 2 - NMAG112
Title: Lineární algebra 2
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: https://www.karlin.mff.cuni.cz/~stovicek/index.php/cs/2324ls-nmag112
Guarantor: doc. Mgr. Libor Barto, Ph.D.
Teacher(s): Bc. Martin Borýsek
Bc. Filip Filipi
RNDr. Jaroslav Hron, Ph.D.
Mgr. Maryia Kapytka
Mgr. Adam Klepáč
Bc. Jakub Knesel
RNDr. Dominik Krasula
RNDr. Alexander Slávik, Ph.D.
doc. RNDr. Jan Šťovíček, Ph.D.
Class: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 1. ročník
M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Mathematics > Algebra
Co-requisite : NMAG111
Incompatibility : NALG002, NMAG102, NMAG114
Interchangeability : NALG002, NMAG102
Is incompatible with: NMAG114, NMAG102
Is interchangeable with: NMAG114, NMAG102
In complex pre-requisite: NMAG201, NMAG202, NMAG206, NMAG211, NMFM202, NMNM331, NMSA336
Annotation -
The second introductory lecture in linear algebra for General Mathematics, and Information Security
Last update: Omelka Marek, doc. Ing., Ph.D. (30.05.2023)
Course completion requirements -

See the website of the course.

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)
Literature -

C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM 2000.

T.S. Blyth, E.F. Robertson, Basic Linear Algebra, Springer Verlag London,2002,

S.H. Friedberg, A.J. Insel, L.E.Spence, Linear Algebra, Third Edition, Prentice-Hall, Inc., 1997

L. Barto, J. Tůma, Lineární algebra a geometrie, elektronická skripta

Last update: Stanovský David, doc. RNDr., Ph.D. (10.02.2023)
Requirements to the exam -

See the website of the course.

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)
Syllabus -
  • standard and abstract scalar product, orthogonal basis, Gram-Schmidt orthogonalization,
  • orthogonal and unitary mappings and matrices, rotations (especially in 3D), group properties,
  • eigenvalues, eigenvectors, diagonalization, Jordan canonical form,
  • unitary and orthogonal diagonalization, spectral theorems, singular value decomposition,
  • bilinear and quadratic forms, their matrix, orthogonalization, inertia theorem,
  • geometry in R3

Last update: Stanovský David, doc. RNDr., Ph.D. (10.02.2023)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html