PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Analýza censorovaných dat - NMST531
Anglický název: Censored Data Analysis
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2017 do 2019
Semestr: zimní
E-Kredity: 5
Rozsah, examinace: zimní s.:2/2 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: angličtina, čeština
Způsob výuky: prezenční
Další informace: http://www.karlin.mff.cuni.cz/~kulich/vyuka/cens/index.html
Garant: doc. Mgr. Michal Kulich, Ph.D.
Třída: M Mgr. FPM
M Mgr. FPM > Povinně volitelné
M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Kategorizace předmětu: Matematika > Pravděpodobnost a statistika
Prerekvizity : {Prerekvizita pro NMST531}, NMSA407
Je prerekvizitou pro: NMST532
Anotace -
Poslední úprava: G_M (28.05.2013)
Předmět propojuje teorii pravděpodobnosti (martingaly), teoretickou statistiku (pořadové testy), teorii spolehlivosti a analýzu přežití. Proberou se čítací procesy, odhady funkce přežití a kumulativního rizika, parametrické modely, dvou a vícevýběrové testy na censorovaná data, regresní modely. Cvičení obsahuje teoretické příklady i praktické aplikace.
Cíl předmětu -
Poslední úprava: T_KPMS (07.05.2015)

Seznámit studenty s metodami pro analýzu censorovaných dat.

Podmínky zakončení předmětu - angličtina
Poslední úprava: RNDr. Jitka Zichová, Dr. (23.04.2018)

The exercise class credit is necessary to sign up for the exam.

Requirements for exercise class credit: The credit for the exercise class will be awarded to the student who is present at the exercise class sessions (two absences are tolerated) and hands in a satisfactory solution to each assignment by the prescribed deadline.

The nature of these requirements precludes any possibility of additional attempts to obtain the exercise class credit.

Literatura
Poslední úprava: T_KPMS (16.09.2014)

Fleming TR and Harrington DP "Counting Processes and Survival Analysis" Wiley, New York, 1991.

Kalbfleisch JD and Prentice RL "The Statistical Analysis of Failure Time Data". Wiley, New York, 2002.

Metody výuky -
Poslední úprava: T_KPMS (12.05.2014)

Přednáška + cvičení.

Požadavky ke zkoušce - angličtina
Poslední úprava: RNDr. Jitka Zichová, Dr. (23.04.2018)

The exam is oral. Requirements for the oral exam comprise the entire extent of the lecture.

Sylabus -
Poslední úprava: T_KPMS (16.09.2014)

1. Censorovaná náhodná veličina.

2. Parametrické modely pro censorovaná data.

3. Neparametrické odhady rizikové funkce a funkce přežití.

4. Neparametrické dvouvýběrové testy.

5. Coxův regresní model.

6. Transformační modely.

7. Diagnostika.

8. Analýza opakovaných událostí

Vstupní požadavky - angličtina
Poslední úprava: doc. Mgr. Michal Kulich, Ph.D. (25.05.2018)

This course assumes the knowledge of linear regression theory and, preferably but not necessarily, generalized linear models. Intermediate-level knowledge of probability theory, including continuous martingales, and counting process theory is also required.

 
Univerzita Karlova | Informační systém UK