PředmětyPředměty(verze: 928)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Funkce pro učitele ZŠ a SŠ - OPBM3M032A
Anglický název: Functions for primary and secondary school teachers
Zajišťuje: Katedra matematiky a didaktiky matematiky (41-KMDM)
Fakulta: Pedagogická fakulta
Platnost: od 2022
Semestr: zimní
E-Kredity: 5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/1, Zk [HT]
Rozsah za akademický rok: 0 [hodiny]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Je zajišťováno předmětem: OPBM4M032A
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: prof. RNDr. Ladislav Kvasz, DSc., Dr.
Mgr. Derek Pilous, Ph.D.
Prerekvizity : OPBM3M021A
Je prerekvizitou pro: OPBM3M047A
Anotace
Poslední úprava: Mgr. Kristýna Nižňanská (12.09.2022)
Předmět je věnován funkcím, zejména polynomiálním, racionálním a goniometrickým, jejich vlastnostem a úvodu do matematické analýzy skrze derivace a integrály. Klíčovým konceptem je obsah geometrických útvarů. Způsob výuky sleduje historický vývoj a je vhodný pro učitele jako osnova vyučování základů analýzy na střední škole.
Deskriptory
Poslední úprava: Mgr. Kristýna Nižňanská (12.09.2022)

Celková časová zátěž studenta

140,0

Přímá výuka

 

Přednášky prezenční studium:

2 týdně

Cvičení prezenční studium:

1 týdně

 Cvičení kombinované studium:  14 hodin celkem

Příprava na výuku

 

Doba očekávané přípravy na 1 hodinu přednášky

30 minut

Plnění průběžných úkolů

2 týdně

Práce se studijními materiály (za semestr)

40 hodin

   

Plnění předmětu

 

Seminární práce

0 hodin

Příprava na zápočet

0 hodin

Příprava na zkoušku a zkouška

20 hodin

Literatura
Poslední úprava: Mgr. Kristýna Nižňanská (12.09.2022)

Toeplitz, Otto (2007). The calculus, A Genetic Approch. The University of Chicago Press.
Český překlad v Moodlu: Kalkulus: Genetický přístup
(Toeplitzova kniha je jedinečná svým přístupem, v níž autor buduje jednotlivé pojmy v souladu s jejich historickým vývojem. Je proto inspirací budoucím učitelům pro jejich vyučování.)

Zeldovič, Jakov Borisovič (1973). Vyššia matematika pre začiatočníkov. Alfa, Bratislava.
(Kniha je napsaná předním ruským fyzikem, jedním z tvůrců sovětské atomové bomby. Obsahuje množství vynikajících příkladů použití matematické analýzy ve fyzice – stabilita reaktoru, let rakety apod.)

Courant, Richard & Robbins, Herbert (1996). What Is Mathematics?: An Elementary Approach to Ideas and Methods: An Elementary Approach to Ideas and Methods. Oxford University Press.
(Autor knihy R. Courant je významným americkým matematikem, po kterém je pojmenován matematický ústav Národní akademie věd USA. Jejím cílem je představit žákům středních škol zajímavé výsledky vyšší matematiky, tedy také matematické analýzy.)

Courant, Richard (1993). Differential and Integral Calculus, Vol. I.
(Jedná se o možná  nejlepší kurz matematické analýzy, který kdy byl napsán. Vznikal v Göttingenu v době, kdy vedoucím katedry byl David Hilbert, a jeho asistenty byli například Hermann Weyl a Richard Courant.)

Černý, Ilja (2002). Úvod do inteligentního kalkulu. 1000 příkladů z elementární analýzy. Academia, Praha. Dostupné na: http://matematika.cuni.cz/BC-MA.html.
(Vynikající sbírka řešených příkladů a úloh z matematické analýzy.)

Jarník, Vojtěch (1984). Diferenciální počet I, II. Academia, Praha. Dostupné na: http://matematika.cuni.cz/BC-MA.html.
(Kniha je sice nevhodná jako primární učebnice, ale může být využita jako vynikající příručka, ve které člověk nalezne odpovědi na všechny nejasnosti, na které během studia analýzy narazí.)

Sylabus
Poslední úprava: Mgr. Kristýna Nižňanská (12.09.2022)

Pojem funkce a jeho zavedení

Archimédova kvadratura paraboly

Obsah a určitý integrál

Pojem určitého integrálu

Některé věty o určitém integrálu

Tečna ke křivce a pojem derivace

Maxima a minima

Logaritmická funkce

Základní věta matematické analýzy

Věty o derivacích

Integrace per partes

Integrální substituce

Inverzní funkce

Goniometrické a cyklometrické funkce

Integrace racionálních funkcí

Podmínky zakončení předmětu
Poslední úprava: Mgr. Kristýna Nižňanská (12.09.2022)

Písemná a ústní zkouška.

 
Univerzita Karlova | Informační systém UK