PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Projektivní geometrie I - NMUG106
Anglický název: Projective geometry I
Zajišťuje: Katedra didaktiky matematiky (32-KDM)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2019
Semestr: letní
E-Kredity: 5
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: Mgr. Lukáš Krump, Ph.D.
Třída: M Bc. DGZV
M Bc. DGZV > Povinné
M Bc. DGZV > 1. ročník
Kategorizace předmětu: Matematika > Matematika, Algebra, Diferenciální rovnice, teorie potenciálu, Didaktika matematiky, Diskrétní matematika, Matematická ekonomie a ekonometrie, Předměty širšího základu, Finanční a pojistná matematika, Funkční analýza, Geometrie, Předměty obecného základu, , Reálná a komplexní analýza, Matematika, Matematické modelování ve fyzice, Numerická analýza, Optimalizace, Pravděpodobnost a statistika, Topologie a kategorie
Neslučitelnost : NDGE003, NMTD106
Záměnnost : NDGE003, NMTD106
Je neslučitelnost pro: NMTD106, NMTD205
Je záměnnost pro: NMTD205, NDGE003, NMTD106
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Cílem výuky je vytvoření projektivní roviny, respektive projektivního rozšíření eukleidovské roviny a jejich využití k popisu kuželoseček a konstrukcím kuželoseček z daných prvků.
Poslední úprava: T_KDM (20.04.2012)
Cíl předmětu -

Předmět pomáhá získat teoretické zázemí pro vyučování matematiky na střední škole.

Poslední úprava: T_KDM (20.04.2012)
Podmínky zakončení předmětu

Zápočet se udílí za aktivitu na cvičeních, v opodstatněných důvodech (delší omluvená absence) lze zápočet alternativně získat za vypracování zadaných domácích úkolů.

Povaha této kontroly studia vylučuje opakování této kontroly.

Zápočet je nutnou podmínkou účasti u zkoušky.

Poslední úprava: Krump Lukáš, Mgr., Ph.D. (21.02.2018)
Literatura -

Havlíček, K.: Úvod do projektivní geometrie kuželoseček. Praha, SNTL 1956

Bureš, J.- Burešová, J.: Projektivní geometrie I. Skripta MFF UK Praha

Kadleček, J.: Sto úloh z projektivní geometrie. Text KDM MFF UK, Praha 1995

Kadeřávek-Klíma-Kounovský: Deskriptivní geometrie I. Praha, od 1926

Kadleček: Základy geometrie. Skripta MFF UK Praha

Medek: Úvod do projektivnej geometrie. Bratislava, SPN 1975

Poslední úprava: T_KDM (20.04.2012)
Metody výuky -

Přednáška a cvičení.

Poslední úprava: T_KDM (20.04.2012)
Sylabus -

Projektivní rovina. Projektivní rozšíření euklidovské roviny. Pappova věta. Princip duality. Projektivita mezi jednoparametrickými útvary. Involuce. Projektivní definice kuželosečky. Věta Pascalova a Brianchonova. Pól a polára, využití ke konstrukcím. Svazek a řada kuželoseček. Ohniskové vlastnosti kuželoseček. Konstrukce kuželoseček z daných prvků. Středová kolineace. Obraz kružnice ve středové kolineaci.

Poslední úprava: T_KDM (20.04.2012)
 
Univerzita Karlova | Informační systém UK