PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Úvod do optimalizace - NMSA336
Anglický název: Introduction to Optimisation
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018 do 2018
Semestr: letní
E-Kredity: 4
Rozsah, examinace: letní s.:2/1 Z+Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: doc. RNDr. Martin Branda, Ph.D.
Třída: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 2. ročník
M Bc. OM
M Bc. OM > Povinně volitelné
M Bc. OM > Zaměření STOCH
Kategorizace předmětu: Matematika > Optimalizace
Prerekvizity : {Aspoň jedna lineární algebra}, {Aspoň jedna analýza nebo kalkulus 1. roč.}
Je neslučitelnost pro: NMSA936
Je záměnnost pro: NMSA936
Ve slož. prerekvizitě: NMSA349
Anotace -
Poslední úprava: G_M (14.05.2013)
Základní přednáška z optimalizace. Doporučeno pro bakalářský obor Obecná matematika, zaměření Stochastika. Povinný předmět bakalářského oboru Finanční matematika.
Cíl předmětu -
Poslední úprava: G_M (27.04.2012)

Vyložit základní postupy a metody používané při hledání optimálního řešení zadané úlohy. Studenti se dozvědí potřebnou teorii a dané postupy si na numerických příkladech osvojí.

Podmínky zakončení předmětu
Poslední úprava: RNDr. Jitka Zichová, Dr. (05.03.2018)

Předmět je zakončen zápočtem a zkouškou. Podmínky pro udělení zápočtu jsou následující:

1. Odevzdání správně vypracovaného domácího úkolu na simplexový algoritmus (s možností jedné opravy).

2. Získání alespoň 80% bodů z pěti domácích úloh (bez možnosti opravy). Termíny odevzdání úkolů jsou určeny cvičícím.

Získání zápočtu je nutnou podmínkou účasti na zkoušce.

Literatura
Poslední úprava: T_KPMS (25.04.2016)

Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M.: Nonlinear programming: theory and algorithms. Wiley, New York, 1993.

Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont, 1999.

Dupačová, J., Lachout, P.: Úvod do optimalizace. MatfyzPress, Praha, 2011.

Plesník, J.; Dupačová, J.; Vlach, M.: Lineárne programovanie. Alfa, Bratislava, 1990.

Rockafellar, T.: Convex Analysis. Springer-Verlag, Berlin, 1975.

Wolsey, L.A.: Integer Programming, Wiley, New York, 1998.

Metody výuky -
Poslední úprava: T_KPMS (15.05.2012)

Přednáška+cvičení.

Požadavky ke zkoušce
Poslední úprava: RNDr. Jitka Zichová, Dr. (05.03.2018)

Zkouška probíhá písemně. Test se skládá ze tří početních příkladů, které byly typově probrány na cvičení, a jedné rozsáhlejší teoretické otázky na látku probranou na přednášce. Pro úspěšné splnění je nutné získat alespoň 60% bodů.

Sylabus -
Poslední úprava: T_KPMS (25.04.2016)

1. Optimalizační úlohy a jejich formulace. Aplikace v ekonomii, financích, dopravě a matematické statistice.

2. Základy konvexní analýzy (konvexní množiny, konvexní funkce více proměnných).

3. Úloha lineárního programování (struktura množiny přípustných řešení, přímá metoda řešení, simplexová metoda, dualita, Farkasova věta).

4. Úlohy celočíselného lineárního programování (aplikace, algoritmus branch-and-bound).

5. Úloha nelineárního programování (lokální a globální podmínky optimality, podmínky regularity).

6. Kvadratické programování jako speciální typ úlohy nelineárního programování.

 
Univerzita Karlova | Informační systém UK