Přednáška poskytuje, spolu s paralelní přednáškou analýzy,
základní matematický kurs pro studenty fyziky.
Důraz je kladen i na propojení znalostí
všech těchto oboů.
Klíčová témata přednášky:
lineární prostor, dimenze, matice, determinanty,
grupy a algebry matic, vlastní čísla.
Poslední úprava: Kudrnová Hana, Mgr. (20.05.2019)
This course gives, together with parallel
courses on analysis, a basic course of mathematics
for physicists. Emphasis is given also to
relationship of all these disciplines.
Keywords
linear spaces, dimension, matrices, determinants,
groups and algebras of matrices, eigenvalues,
Jordan normal form.
Poslední úprava: Kudrnová Hana, Mgr. (20.05.2019)
Podmínky zakončení předmětu -
Předmět je zakončen složením zápočtu a zkoušky. Složení zápočtu je podmínkou pro účast u zkoušky. Podmínky zkoušky jsou specifikovány v dokumentu Požadavky ke zkoušce (viz webovou stránku předmětu, uvedenou níže). Zápočet je udělován za průběžnou a systematickou práci na cvičení a jeho povaha tedy vylučuje možnost opakování, s výjimkou velkého zápočtového testu.
Pro získání zápočtu bude třeba splnit současně tři kritéria:
získat 80 za 120 bodů za domácí úkoly a kvízy
získat 25 z 50 bodů za testy (2 malé a 1 velký)
aktivně se zúčastnit alespoň 9 cvičení
Podrobnosti na stránce https://www.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2324
Poslední úprava: Krump Lukáš, Mgr., Ph.D. (16.10.2023)
Available on the webpage of the course https://www.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2324
Poslední úprava: Krump Lukáš, Mgr., Ph.D. (16.10.2023)
Literatura -
D. Šmíd: Lineární algebra pro fyziky, elektronická skripta, dostupná na webu kurzu.
Poslední úprava: Šmíd Dalibor, Mgr., Ph.D. (28.09.2020)
D. Šmíd: Lineární algebra pro fyziky, elektronic scriptum, available on the webpage of the course https://msekce.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2021
Other sources available on the webpageof the course.
Poslední úprava: Šmíd Dalibor, Mgr., Ph.D. (28.09.2020)
Požadavky ke zkoušce -
Zkouška bude sestávat ze dvou částí:
50-minutový písemný orientační test o 5 otázkách, které budou testovat znalost základních pojmů a postupů (definice, formulace důležitých tvrzení, jednoduché početní úlohy). Konstrukce typické otázky je následující: formulace nějaké věty nebo definice uvedené v požadavcích a doplňující otázka testující její pochopení nalezením příkladu, protipříkladu, aplikací tvrzení, výpočtem apod. Početní dovednosti chápeme hlavně jako cestu k pochopení teoretické látky, testujeme je proto především v rámci zápočtu a u zkoušky již jen doplňkově.
Po krátké přestávce následuje 90-minutový písemný hlavní test o 4 otázkách, kde budeme testovat znalost formulací a důkazů vět v rozsahu uvedeném v dokumentu Seznam požadavků ke zkoušce.
Poslední úprava: Šmíd Dalibor, Mgr., Ph.D. (28.09.2020)
Available on the webpage of the course https://msekce.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2021
Poslední úprava: Šmíd Dalibor, Mgr., Ph.D. (28.09.2020)
Sylabus -
1 Soustavy lineárních rovnic a jejich řešení. Gaussova eliminace.
2 Matice a operace s nimi, inverzní matice.
3 Grupy, vektorové prostory a jejich příklady. Vektorové podprostory, lineární závislost, množina generátorů.
4 Báze, dimenze, Steinitzova věta.
5 Hodnost matice, Frobeniova věta.
6 Lineární zobrazení, jejich matice vzhledem k bázím. Jádro a obraz. Věta o dimenzi jádra a obrazu.
7 Souřadnice, matice přechodu, změna matice homomorfizmu při změně báze. Podobné matice. Stopa matice a zobrazení.