PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Markovské procesy - NMTP562
Anglický název: Markov Processes
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018
Semestr: letní
E-Kredity: 6
Rozsah, examinace: letní s.:4/0 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Další informace: http://simu0292.utia.cas.cz/seidler/teaching.html
Garant: RNDr. Jan Seidler, CSc.
Třída: M Mgr. PMSE
M Mgr. PMSE > Volitelné
Kategorizace předmětu: Matematika > Pravděpodobnost a statistika
Prerekvizity : NMTP432
Anotace -
Poslední úprava: T_KPMS (16.05.2013)
Budou vyloženy základní výsledky teorie markovských procesů se spojitým časem: přechodové funkce a semigrupy, fellerovské procesy, čistě skokové procesy, Lévyho procesy, invariantní míry.
Cíl předmětu -
Poslední úprava: T_KPMS (16.05.2013)

Cílem předmětu je studium základních vlastností markovských procesů se

spojitým časem a obecnou množinou stavů, se zaměřením na fellerovské

procesy a asymptotické vlastnosti.

Podmínky zakončení předmětu
Poslední úprava: RNDr. Jitka Zichová, Dr. (19.04.2018)

Složení ústní zkoušky.

Literatura
Poslední úprava: T_KPMS (16.05.2013)

L.C.G. Rogers, D. Williams: Diffusion Markov processes and martingales. Vol. 1., Cambridge univ. press, 1994.

S.N. Ethier, T.G. Kurtz: Markov processes, Wiley, 1986.

Metody výuky -
Poslední úprava: T_KPMS (16.05.2013)

Přednáška.

Požadavky ke zkoušce
Poslední úprava: RNDr. Jan Seidler, CSc. (11.10.2017)

Zkouška je ústní, požadavky odpovídají sylabu předmětu v rozsahu, který byl presentován na přednášce.

Sylabus -
Poslední úprava: T_KPMS (16.05.2013)

1. Markovská vlastnost, přechodové funkce a s nimi asociované operátory, konstrukce procesu

z přechodové funkce, operátory posunutí a homogenní procesy.

2. Fellerovské procesy v lokálně kompaktních prostorech, odpovídající C0 semigrupy a jejich

resolventy a generátory, Hilleova-Yosidova věta, vlastnosti trajektorií, silně markovské procesy.

3. Skokové procesy, procesy s nezávislými přírůstky, Lévyho procesy, Lévyho-Chinčinova formule.

4. Difúzní procesy: lokální charakteristiky, konstrukce pomocí stochastických diferenciálních rovnic,

Kolmogorovova rovnice.

5. Elementární ergodická teorie: invariantní míry, transience a rekurence, základní věty o existenci

invariantní míry (Krylovova-Bogoljubovova, Sunyachova), silně fellerovské procesy, jednoznačnost

a statbilita invariantní míry.

Vstupní požadavky -
Poslední úprava: RNDr. Jan Seidler, CSc. (28.05.2019)

Je nutno mít solidní znalosti teorie pravděpodobnosti a jisté povědomí o markovských řetězcích. Znalost stochastické analysy, případně stochastických diferenciálních rovnic, je výhodná, ale nikoliv nevyhnutelná - záleží na dohodě s přednášejícím.

 
Univerzita Karlova | Informační systém UK