PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Nelineární diferenciální rovnice a nerovnice 1 - NMMO533
Anglický název: Nonlinear Differential Equations and Inequalities 1
Zajišťuje: Matematický ústav UK (32-MUUK)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2023
Semestr: zimní
E-Kredity: 6
Rozsah, examinace: zimní s.:3/1, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Garant: doc. RNDr. Miroslav Bulíček, Ph.D.
Třída: M Mgr. MOD
M Mgr. MOD > Povinně volitelné
Kategorizace předmětu: Matematika > Diferenciální rovnice, teorie potenciálu
Neslučitelnost : NDIR042
Záměnnost : NDIR042
Je záměnnost pro: NDIR042
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Pseudomonotónní a monotónní operátory, mnohoznačné operátory a aplikace na nelineární eliptické parciální diferenciální rovnice a nerovnice.
Poslední úprava: T_MUUK (14.05.2013)
Cíl předmětu -

Naučit studenty alespoň trochu nelineární diferenciální rovnice a nerovnice

Poslední úprava: T_MUUK (14.05.2013)
Podmínky zakončení předmětu -

Studenti musí mít zápočet, aby byli připušteni ke zkoušce. Zápočet se získá za docházku na cvičení. Zkouška má ústní formu a zkouší se látka probraná na přednášce.

Poslední úprava: Bulíček Miroslav, doc. RNDr., Ph.D. (04.10.2018)
Literatura -

T.Roubíček: Nonlinear differenctial equations with applications. Birkhauser, Basel, 2005.

Poslední úprava: T_MUUK (14.05.2013)
Metody výuky -

Přednáška a cvičení

Poslední úprava: T_MUUK (14.05.2013)
Požadavky ke zkoušce -

Látka probraná během přednášek.

Poslední úprava: Bulíček Miroslav, doc. RNDr., Ph.D. (04.10.2018)
Sylabus -

Cílem přednášky je zvládnutí základních technik užívaných pro nelineární diferenciální rovnice a nerovnice jak na úrovni abstraktních operátorů v Banachových prostorech, tak na reprezentativních úlohách, odvozených jakožto slabé formulace stacionárních okrajových či jednostranných úloh nebo úloh s volnými hranicemi s kvazi- nebo semi-lineárními eliptickými parciálními diferenciálními rovnicemi. Speciálně budou probírány metody monotonie a kompaktnosti, variační metody pro úlohy s (případně nehladkými) potenciály, Galerkinova metoda, metoda penalizace, a dále též soustavy nelineárních diferenciálních rovnic s konkrétními aplikacemi v (termo)mechanice kontinua či dalších oblastech fyziky.

Na cvičeních jsou probírány modifikace úloh presentovaných v rámci přednášky.

Poslední úprava: T_MUUK (14.05.2013)
 
Univerzita Karlova | Informační systém UK