PředmětyPředměty(verze: 978)
Předmět, akademický rok 2025/2026
   Přihlásit přes CAS
   
Principles of Genetics - MB140P16E
Anglický název: Principles of Genetics
Český název: Základy genetiky
Zajišťuje: Katedra genetiky a mikrobiologie (31-140)
Fakulta: Přírodovědecká fakulta
Platnost: od 2025
Semestr: zimní
E-Kredity: 5
Způsob provedení zkoušky: zimní s.:kombinovaná
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: 16
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: angličtina
Poznámka: povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: RNDr. Michaela Schierová, Ph.D.
Vyučující: Ivalú Macarena Ávila Herrera, M.Sc., Ph.D.
Mgr. Martin Forman
doc. Mgr. Vladimír Hampl, Ph.D.
RNDr. Martina Johnson Pokorná, Ph.D.
doc. RNDr. Jiří Král, CSc.
RNDr. Michaela Schierová, Ph.D.
Je neslučitelnost pro: MB140P47, MB140P17
Anotace -
Tento kurz genetiky je určen pro magisterské studenty Programu Parazitologie a infekční biologie. Předpokládají se předchozí základní znalosti z genetiky a molekulární biologie, které budou během semináře zopakovány. Studentům bude poskytnuta „první pomoc“ (v případě potřeby). Seminář je nedílnou součástí kurzu. Řešením teoretických úloh, diskusí a pozorováním mikroskopických vzorků lépe pochopíte probíranou teorii.
Jako doplněk i informacím o genetice modelových organismů budou zmíněny specifické rysy genetiky parazitů a jejich vektorů.
Na konci kurzu získáte dobré znalosti z přenosové genetiky, cytogenetiky a porozumíte principům genomové analýzy a molekulární taxonomie.

Kritéria hodnocení:
Pro získání zápočtu je nutné:
Pravidelná účast na seminářích (minimálně 60%)
Úspěšné složení „Testu z příkladů“ (minimálně 40 % bodů )
Řešení problémů během semestru (na Moodle): alespoň 2 úspěšně vyřešené (asi 10 možných)

Zkouška je kombinována z písemného testu a ústní zkoušky. Vaše aktivita během semestru může zlepšit Váš konečný výsledek. Písemný test se skládá z 10 otázek pokrývajících všechna prezentovaná témata. Každá odpověď je hodnocena 0 - 4 body. K ústní části zkoušky (zpravidla jiný den než písemný test) mohou přistoupit pouze studenti, kteří získali v písemném testu alespoň 25 bodů.
U ústní zkoušky získáte 2 otázky, každá za 20 bodů (maximálně).
Doplňkové aktivity jsou: krátké testy v Moodle během semestru (maximálně 20 bodů) a tvůrčí činnost (dobrovolné recenze, projekty, prezentace atd., maximálně za 10 bodů)
Konečná známka:
1: nad 85 bodů
2: více než 70 bodů
3: více než 55 bodů

Pro získání konečné známky musíte získat zápočet.
V akademickém roce 2025/26 budou přednášky v pondělí od 9:00-10:30 a semináře ve středu od 14:00 do 15:30.

Moodle:
Principles of genetics
https://dl2.cuni.cz/course/view.php?id=6102
Password: malaria

Pozor: tato přednáška není součástí Modulu, ale není vhodné ji kombinovat s ostatními přednáškami, tedy Genetika nebo Základy genetiky.



Poslední úprava: Schierová Michaela, RNDr., Ph.D. (16.09.2025)
Literatura -

The essential study material for the exam are presentations available on Moodle.

Klug W.S., Cummings M.R., Spencer C.: Concepts of Genetics , Pearson Education, Inc., ,

Snustad D.P., Simmons M.J.: Principles of Genetics 2019 John Wiley and Sons, Inc., Hoboken,

Brooker RJ: Genetics: Analysis and Principles, 6th ed., McGraw-Hill Education, 2017

Poslední úprava: Rubešová Jana, RNDr., Ph.D. (08.06.2022)
Požadavky ke zkoušce - angličtina

Evaluation criteria:
To get a credit from the course, you are required:
To attend seminars regularly (minimum 60%)
To pass successfully „Solving Problems Test“  = to get 40% points at minimum
To solve  problems during semester (at Moodle): at least 2 successfully solved (about 10 possible)

The exam is combined from written test and oral exam. Also your additional activity during semester can improve your final result. The written test  is composed of 10 questions covering all presented topics. Each  answer is rated 0 - 4 points. Only students who got at least 25 points in the written test are allowed to the oral exam (usually another day than the written test). 
At the oral exam you get 2 questions, each for 20 points (maximum).
The additional activities are: short tests at Moodle during semester (20 points maximum) and creative activity  (voluntary reviews, projects, presentations etc., for 10 points maximum)
Final mark:
1: over 85 points
2: over 70 points
3: over 55 points

To get a final mark you are required to get a credit.

Poslední úprava: Schierová Michaela, RNDr., Ph.D. (01.08.2025)
Sylabus - angličtina

Principles of Genetics: Syllabus

L: Lectures

S: seminars or practical courses, the last seminar are practical, the correct time scedule will be announced in October

Lectures:

L1: Introduction to Genomics:     

Genes and Their Evolution,  The First Genomes , Genomic Structures
Genome Size and Its Evolution

L2: Transmission Genetics:            

Mendel´s Principles of Gene Transfer, The Principles of Segregation and Independent Assortment Versus Meiosis, The Reasons for Non-Mendelian Transmission, Intergene (Non Allelic) Interactions (Based on Epistasis)

L3: Extranuclear Inheritance:        

 Main Features of Extranuclear Gene Transmission. Examples of Uniparental and Biparental Gene Transfer. The Genomes of Semiautonomous Organelles: Main Features of Chloroplast and Mitochondrial DNA. Application of  mtDNA Analysis. Mitochondria In Parasites

L4: Gene Linkage and Genetic Maps:      

Morgan´s Laws, Map Distance And Recombination Frequency, Haplotype, Gene Mapping Using Molecular  Markers (SNP, RFLP), Linkage Disequilibrium (LD), Genome Wide Association Studies (GWAS), Genetic maps in parasites

 

L5: Gene Mutations:            

Induced Site Specific Mutations For Gene Function Analysis. Genetically Modified Organisms (GMOs): Vector Organisms and Parasites, GMO and Cartagena Protocol.

L6: Molecular Taxonomy                 

Concept of homology, natural taxa, why to make trees and use molecular data for it, multiple sequence alignment, distance and character methods of tree construction, bootstrapping, rooting the tree, interpretation of results. 

 

L7: Principles of Population Genetics    

Allele and Genotype Frequencies in Autogamic and Ideal Panmictic Populations.

Hardy-Weinberg Law.  Selection , Mutation, Migration, Genetic Drift Change  Allele Frequencies. Inbreeding Causes Heterozygote Frequency Reduction.

 

L8: Evolutionary Genomics:           

Comparative Genomics: The Tools. Selecting Appropriate Markers for Different Phylogenetic Distances. Dynamics of Genomes (Repetitive DNA, Epigenomics). Trends in Genomic Research

 

L9: Chromosomes and Chromatin           

Chromosome Morphology, Telomere (Composition, Function), Nucleolar Organizer Region (Composition, Function), Centromere (Composition, Function). Holocentric Chromosomes.

Chromatin, Composition, Histones and HMG Proteins. Histone Types, Structure of Nucleosome. Subtypes and Modification of Histones and their Significance. Superspiralisation of Chromatin. Euchromatin and Heterochromatin, Constitutive and Facultative Heterochromatin, Functions of Heterochromatin, Position Effect of Variegation, Insulators. B Chromosomes.

Methods of Chromosome Analysis. Banding Techniques. Methods pf Molecular Cytogenetics. Flow Cytometry

 

L10:     Mitosis ans Meiosis             

Mitosis. Structure and Function Of Centrosome and Similar Structures. Course of Mitosis: Initiation of Nuclear Division at Prophase, Spindle (Types Of Microtubules), Molecular Cascade Ensuring Chromosome Segregation, Metaphase Checkpoint, Nondisjunction, Anaphase A and B. Evolution Of Mitosis.

Meiosis. Zygotic and Gametic Reduction. Significance and Course Of Meiosis. Specific Features of Prophase I. Synapsis and Formation of Bivalents, Bouquet. Synaptonemal Complex. Recombination and Meiotic Crossing-Over, Basic Molecular Mechanisms. Chiasmata. Evolution of Meiosis: Achiasmatic and Inverted Meiosis.

 

L11: Chromosome and Genome Mutations. Mutagen Testing             

Chromosome Changes. Chromosome Rearrangements: Classification, Induction, Clastogens. Deletion, Duplication, Inversion, Transposition, Translocation, Fusion, Isochromosome, Behaviour of Chromosomes at Meiosis of Heterozygotes. Complex Chromosome Rearrangements (e.g., Chromothripsis).

Genome Mutations: Aneuploidy, Polyploidy. Animal Polyploidy.

Testing of Potential Mutagens Inducing Chromosome Rearrangements and Genome Mutations. Karyotype Changes at Cancer Cells.

 

L12: Sex Chromosomes and Reproduction       

Chromosomes and Sex. Hermafroditism, Epigamy. Chromosome Determination of Sex, Sex Chromosomes, Homogametic and Heterogametic Sex,  Evolution of Sex Chromosomes. Mechanisms of Alosome Degeneration, Neo-Sex Chromosomes.

Dose Compensation . Sex Chromosome Inactivation, , Lyonisation and Barr Body, XIST Gene.

Reversion Of Sex Chromosomes To Autosomes. Haplodiploidy, Parahaploidy, Thelytoky.

 

L9: Gene Expression            

Specific Features In Gene Expression In B Cells. Transcriptomic Analysis In Parasites – The Main Findings

 

Seminars

S1: Introduction to The Course (Information). Genetic Terminology 

Gene, Allele, Housekeeping and Regulated Genes.  Intra-Gene Allelic Interactions, Genotype and Phenotype, Qualitative and Quantitative Traits, Genetic Background.

 

S2: Revison of Introductory Test               

 

S3: Transmission Genetics             

Mendelian Genetics, Analysis of Dominace and Recessivity. Different Types of Crosses, Genotypic and Phenotypic Ratios, Intergenic Interactions.

 

S4: Transmission Genetics 2         

Non-Mendelian Genetics. Sex Linked Traits.

 

S5: Gene Linkage And Gene Mapping     

Recombination Frequency And Its Evaluation. Two-Point And Three-Point Test Crosses.

Identification Of Gene Location.

 

S6: Gene Mutations             

Revision of Terms, Parameters of The Ames Test and the Result Analysis

 

S7: Molecular Taxonomy                 

Data Analysis: Construction of phylogenetic tree from a provided data set using online tools – multiple sequence alignment, tree construction, visualisation and figure production. 

S8: Population Genetics                  

Autogamic And Panmictic Populations. Allelic And Genotypic Frequencies In The Ideal And Real Populations

 

S9, S10, S11, S12: Cytogenetics    (a whole day course)

Microscopic Observations:

Chromosome Morphology, Banding Techniques and Human Karyotype. Course of Mitotic Division.

Meiosis, Frequency of Recombinations.

Sex Chromosomes and Their Evolution, Chromosome Rearrangements, Meiosis of Heterozygotes for Rearrangements. Fluorescent In Situ Hybridisation (FISH).

 

S13: Modern Trends In Genomics And Ethical Issues

Genome editing, Personalized Medicine

Open Discussion with Student Presentations

 

 

,

Poslední úprava: Schierová Michaela, RNDr., Ph.D. (04.01.2026)
Výsledky učení - angličtina

Upon successful completion of this course, the student:

1. Genomics and Genome Architecture

  • Defines and distinguishes between terms such as orthologs and paralogs within the context of gene family evolution.
  • Describes the structure and dynamics of genomes, with a specific focus on repetitive DNA and mobile genetic elements.
  • Analyzes the causes and consequences of gene duplication as a primary mechanism for the emergence of new gene functions.
  • Explains genome size evolution and the specific features of semiautonomous organelle genomes (mtDNA, cpDNA) in parasites.

2. Transmission and Molecular Genetics

  • Interprets Mendel’s laws in the context of meiosis and identifies the causes of non-Mendelian inheritance.
  • Explains the principles and biochemical causes of intergenic interactions (e.g., recessive epistasis) and predicts modified segregation ratios.
  • Distinguishes between sex-linked, sex-limited, and sex-influenced traits and provides specific examples.
  • Derives the relationship between gene distance on a chromosome and recombination frequency when constructing genetic maps.

3. Molecular Cytogenetics and Cell Division

  • Describes the morphology and functional elements of chromosomes (telomeres, centromeres, NOR) and explains the differences between euchromatin and heterochromatin.
  • Compares the mechanisms of mitosis and meiosis and performs an analysis of the molecular cascades ensuring chromosome segregation.
  • Identifies structural and genomic mutations (e.g., chromothripsis, aneuploidy) and evaluates their impact on parasite fitness or the emergence of cancer cells.
  • Applies molecular cytogenetic methods (e.g., FISH, flow cytometry, banding techniques) in karyotype analysis.

4. Gene Expression and Epigenetics

  • Compares gene expression regulation in bacteria and eukaryotes, including operon function and specific features in B-cells.
  • Explains the principles of epigenetic modifications (imprinting, X-chromosome inactivation) and their influence on the phenotype without altering the DNA sequence.
  • Considers the advantages and disadvantages of various dosage compensation mechanisms across different taxonomic groups.

5. Population and Evolutionary Genetics

  • Applies the Hardy-Weinberg law to calculate allele and genotype frequencies and analyzes factors that disrupt this equilibrium (selection, drift, migration).
  • Explains the consequences of inbreeding on heterozygote frequency within a population.
  • Interprets the results of Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) when searching for genetic markers.

6. Molecular Taxonomy and Bioinformatics

  • Defines the concept of homology and justifies the importance of molecular data for the construction of phylogenetic trees.
  • Applies online tools for multiple sequence alignment and evaluates its quality using scoring matrices.
  • Interprets phylogenetic tree topology and explains the significance of bootstrapping for assessing the statistical support of branches.

7. Modern Biotechnologies and Ethics

  • Describes the principles of the CRISPR-Cas system as a tool for precise genome editing.
  • Categorizes methods for producing Genetically Modified Organisms (GMOs) and evaluates their benefits and risks in accordance with the Cartagena Protocol.
  •  Evaluates and justifies the ethical aspects of gene therapy, germline modifications, and personalized medicine.
  •  

 

Poslední úprava: Schierová Michaela, RNDr., Ph.D. (04.01.2026)
 
Univerzita Karlova | Informační systém UK