PředmětyPředměty(verze: 945)
Předmět, akademický rok 2023/2024
   Přihlásit přes CAS
Game Theory and Applications - JEB064
Anglický název: Game Theory and Applications
Zajišťuje: Institut ekonomických studií (23-IES)
Fakulta: Fakulta sociálních věd
Platnost: od 2023 do 2023
Semestr: letní
E-Kredity: 6
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Zk [HT]
Počet míst: neurčen / neurčen (59)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: doc. PhDr. Martin Gregor, Ph.D.
Třída: Courses for incoming students
Prerekvizity : JEB004
Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (15.02.2023)
This course introduces into classic non-cooperative game theory and its applications in economics. The course develops the game-theoretical toolkit and teaches how to use it in various contexts, especially in modeling of competition (price and quantity competition, labor market competition, promotions, innovations, tournaments, rent-seeking), contracting and bargaining (organizational economics) and policy-making (monetary and fiscal policies, capital taxation, public policies and corporate policies).

In this undergraduate course, we will cover only games with complete information. Therefore, we will focus on problems in which rational agents have identical knowledge about fundamentals of the economy and their interactions, but cope with uncertainty over the actions of their opponents (strategic uncertainty). In contrast, the graduate course JEM013 covers games with incomplete information in which rational agents address both fundamental and strategic uncertainty.
Podmínky zakončení předmětu -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (19.06.2023)

Course requirements: 4 homeworks 50%, a written (three-hour) final exam 50%

Exam 1: May 19, 9-12, Room 206
Exam 2: June 2, 9-12, Room 016
Exam 3: June 26, 9-12 Room 107

Grades ETCS

  • 91-100 A
  • 81-90 B
  • 71-80 C
  • 61-70 D
  • 51-60 E
  • 0-50 F
Literatura -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (15.02.2023)

Tadelis, S. (2013) Game Theory: An Introduction. Princeton University Press.

For each class, I will assign reading that will cover applications relevant to the concept covered in the class.

Požadavky ke zkoušce -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (15.02.2023)

Course requirements: 4 homeworks 50%, a written (three-hour) final exam 50%

Grades ETCS

  • 91-100 A
  • 81-90 B
  • 71-80 C
  • 61-70 D
  • 51-60 E
  • 0-50 F
Sylabus -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (15.02.2023)


We will be meeting on Wednesdays, 11-14, in Room 206.


1.    The Single-Person Decision Problem 

  • Actions, Outcomes, and Preferences
  • Evaluating Random Outcomes
  • Rational Decision Making with Uncertainty
  • Rationality Violations
  • Rule-Rationality as a Synthesis of Mainstream and Behavioral Economics

Aumann, R. J. (2019)

Tadelis (2013) Chapters 1-2 

  • Applications: Let’s make a deal, Money pumping, Allais paradox, Ambiguity aversion 

Blavatskyy et al. (2022) 

2.    Normal-Form Games with Pure Strategies 

  • Dominance in Pure Strategies
  • Iterated Elimination of Strictly Dominated Pure Strategies
  • Best Responses
  • Nash Equilibrium in Pure Strategies
  • Level-k Players
  • Weak Dominance
  • Coordination games, Risk Dominance 

Belleflamme and Peitz (2015) Chapter 3.3

Tadelis (2013) Chapters 3-5 

  • Applications: The Samaritan’s dilemma, Discrete-bid auctions, Cournot and Bertrand duopoly, Bertrand duopoly with limited production capacities, Firm’s choices of price-setting vs. quantity-setting, AI algorithms and pricing, Budgetary commons, Benefit of smallness, Perfect and imperfect tax competition, Texas electricity market, Approval voting, Covid-19 shelter-in-place orders 

Asker, Fershtman, and Pakes (2021)

Dave et al. (2020)

Hindriks and Myles (2013) Chapter 20.2

Hortaçsu et al. (2019) 

3.    Normal-Form Games with Mixed Strategies 

  • Mixed Strategies
  • Strategies, Beliefs, and Expected Payoffs
  • Mixed-Strategy Nash Equilibrium
  • Nash’s Existence Theorem
  • Contest Theory: Tullock Lottery, All-Pay Auction
  • Continuous Lotto Games 

Konrad (2009) Chapters 1-2

Tadelis (2013) Chapter 6 

  • Applications: American and British litigation, Course evaluation schemes at Charles University, Warren Buffett's ‘Billionaire's Buyout Plan’, Public procurements, Campaign finance cap, Venture capital contracting, Labor unions vs. trade unions, Grading competition

Gregor (2021) 

4.    Extensive-Form Games 

  • Normal-Form Representation of Extensive-Form Games
  • Mixed versus Behavioral Strategies
  • Sequential Rationality
  • Backward Induction
  • Subgame-Perfect Nash Equilibrium
  • The One-Stage Deviation Principle 

Belleflamme and Peitz (2015) Chapter 16.3.2

Tadelis (2013) Chapters 7-9 

  • Applications: Price leadership in British supermarkets, Bundling and entry deterrence, Agenda-setting power of committee chairman, Monetary policy-making, Coordinated and sequential budgeting 

Kim, Lan and Dobson (2021)

Riboni and Ruge-Murcia (2010) 

5.    Multistage and Repeated Games 

  • Multistage Games
  • Infinitely Repeated Games
  • The Folk Theorem 

Tadelis (2013) Chapter 10 

  • Applications: Prisoner-Revenge Game 

6.    Bargaining 

  • Chicken game
  • Waiting games
  • Legislative bargaining
  • Bilateral bargaining
  • The Infinite-Horizon Bargaining 

Tadelis (2013) Chapter 11 

  • Applications: Monetary vs. fiscal policy-makers, Fiscal stabilizations
Univerzita Karlova | Informační systém UK