PředmětyPředměty(verze: 908)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Game Theory and Applications - JEB064
Anglický název: Game Theory and Applications
Zajišťuje: Institut ekonomických studií (23-IES)
Fakulta: Fakulta sociálních věd
Platnost: od 2020
Semestr: letní
E-Kredity: 6
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Zk [HT]
Počet míst: 59 / 59 (59)
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst: ne
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: doc. PhDr. Martin Gregor, Ph.D.
Vyučující: doc. PhDr. Martin Gregor, Ph.D.
Třída: Courses for incoming students
Prerekvizity : JEB004
Anotace -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (02.02.2021)
This course introduces into classic non-cooperative game theory and its main applications in economics. The course develops the game-theoretical toolkit and teaches how to use it in various contexts, especially in microeconomic modeling of price and non-price competition (industrial economics, marketing and corporate strategy), contracting (managerial and organizational economics), and collective decision-making (economic policy-making; decisions in corporations and other organizations).

In this undergraduate course, we will cover only games with complete information. Therefore, we will focus on problems in which rational agents know fundamentals of the economy, but cope with uncertainty over actions of their opponents (strategic uncertainty). In contrast, the graduate course JEM013 covers games with incomplete information in which the rational agents address both fundamental and strategic uncertainty at once.
Podmínky zakončení předmětu -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (10.02.2022)

Course requirements: 4 homeworks 50%, a written (three-hour) final exam 50%

Grades ETCS

  • 91-100 A
  • 81-90 B
  • 71-80 C
  • 61-70 D
  • 51-60 E
  • 0-50 F
Literatura -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (02.02.2021)

Tadelis, S. (2013) Game Theory: An Introduction. Princeton University Press.

For each class, I will assign reading that will cover applications relevant to the concept covered in the class.

Požadavky ke zkoušce -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (04.05.2022)

Course requirements: 4 homeworks 50%, a written (three-hour) final exam 50%

Exam 1: May 31, 13-16, Room 105
Exam 2: June 21, 13-16, Room 105

Grades ETCS

  • 91-100 A
  • 81-90 B
  • 71-80 C
  • 61-70 D
  • 51-60 E
  • 0-50 F
Sylabus -
Poslední úprava: doc. PhDr. Martin Gregor, Ph.D. (10.02.2022)


We will meet both in present (Wednesdays, 11-14, Room 206) and online.

Each week has a specific link for the lecture and tutorial in Google Meet. 

February 16: meet.google.com/xat-earm-dcu
February 23: meet.google.com/qdc-jhyn-pcc
March 2: meet.google.com/pgd-nzri-hgu
March 9: meet.google.com/odt-uhwn-ewj
March 16: meet.google.com/cqf-qtiy-qus
March 23: meet.google.com/zjq-zuar-wwf
March 30: meet.google.com/idn-stvo-hau
April 6: meet.google.com/bsc-zwrj-ueb
April 13: meet.google.com/oxg-vxau-jnz
April 20: meet.google.com/cfs-szxa-jct
April 27: meet.google.com/twc-whoh-dxa
May 4: meet.google.com/vsh-yztr-gzs
May 11: Rector’s Day


1.    The Single-Person Decision Problem 

  • Actions, Outcomes, and Preferences
  • Evaluating Random Outcomes
  • Rational Decision Making with Uncertainty
  • Violations
  • Rule-Rationality as a Synthesis of Mainstream and Behavioral Economics 
  • Tadelis (2013) Chapters 1-2

 2.    Normal-Form Games with Pure Strategies

  • Dominance in Pure Strategies
  • Iterated Elimination of Strictly Dominated Pure Strategies
  • Best responses
  • Nash Equilibrium in Pure Strategies
  • Level-k players
  • Weak dominance
  • Coordination games, Risk-dominance 
  • Tadelis (2013) Chapters 3-5 
  • Applications: Lockdown policy, Approval voting, Texas electricity market, Fiscal commons

 3.    Normal-Form Games with Mixed Strategies 

  • Mixed Strategies
  • Strategies, Beliefs, and Expected Payoffs
  • Mixed-Strategy Nash Equilibrium
  • Nash’s Existence Theorem
  • Continuous Lotto Games 
  • Tadelis (2013) Chapter 6 
  • Applications: Innovation contests, Venture capital contracting, Grading competition

4.    Extensive-Form Games

  • Normal-Form Representation of Extensive-Form Games
  • Mixed versus Behavioral Strategies
  • Sequential Rationality
  • Backward Induction
  • Subgame-Perfect Nash Equilibrium
  • The One-Stage Deviation Principle 
  • Tadelis (2013) Chapters 7-9  
  • Applications: Killer amendments, Coordinated vs. sequential budgets, Policy credibility (monetary policy, FDIs, Covid-19 lockdowns)

 5.    Repeated Games 

  • Finitely Repeated Games
  • Infinitely Repeated Games
  • The Folk Theorem 
  • Tadelis (2013) Chapter 10 
  • Applications: to be completed 

6.    Bargaining 

  • One Round of Bargaining
  • Finitely Many Rounds of Bargaining
  • The Infinite-Horizon Bargaining
  • Chicken game
  • Waiting games 
  • Tadelis (2013) Chapter 11 
  • Applications: e-Bay Best Offers, Conflicts between monetary and fiscal policy
Univerzita Karlova | Informační systém UK