PředmětyPředměty(verze: 962)
Předmět, akademický rok 2011/2012
   Přihlásit přes CAS
Funkce více proměnných - OKN2310001
Anglický název: Functions of several variables
Zajišťuje: Katedra matematiky a didaktiky matematiky (41-KMDM)
Fakulta: Pedagogická fakulta
Platnost: od 2010 do 2018
Semestr: zimní
E-Kredity: 3
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:0/0, Z+Zk [HS]
Rozsah za akademický rok: 12 [hodiny]
Počet míst: neurčen / neurčen (50)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: prof. RNDr. Ladislav Kvasz, DSc., Dr.
RNDr. František Mošna, Ph.D.
Vyučující: RNDr. František Mošna, Ph.D.
Je prerekvizitou pro: OKN2310102
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Vektorové prostory, okolí bodu, konvergence, funkce několika proměnných, limity, spojitost, derivace ve směru, parciální derivace, diferenciál, tečné roviny, normály, implicitně zadaná funkce, křivky, plochy, transformace souřadnic, vícenásobný integrál, substituce, Fubiniova věta, křivkový a plošný integrál, užití.
Poslední úprava: JANCARIK/PEDF.CUNI.CZ (27.05.2010)
Cíl předmětu -

Primárním cílem předmětu je seznámit studenty se základními pojmy, vědomostmi a souvislostmi infinitesimálního počtu funkcí dvou a více proměnných v návaznosti na podobné kurzy o funkcích jedné proměnné. Sekundárním cílem je prověřit, zopakovat a upevnit znalosti z předcházejících kurzů zejména z matematické analýzy ale též geometrie (křivky, plochy) nebo algebry (vektorové prostory, lineární, kvadratické formy).

Poslední úprava: JANCARIK/PEDF.CUNI.CZ (27.05.2010)
Literatura -

- Serge Lang: Calculus of Several Variables, Springer N. York 1987
- Walter Rudin: Principles of Mathematical Analysis,McGraw-Hill 1976
- Bruno Budinský, Jura Charvát: Matematika II. (stavební fakulta ČVUT Praha)
- Jaroslav Tišer, Jan Hamhalter: Diferenciální počet funkcí více proměnných (elektrotechnická fakulta ČVUT Praha)
- Jaroslav Tišer, Jan Hamhalter: : Integrální počet funkcí více proměnných (elektrotechnická fakulta ČVUT Praha)
- Eva Dontová: Matematika IV. (fakulta jaderné fyziky a inženýrství ČVUT Praha)
- Štěpán Pelikán, Tomáš Zdráhal: Matematická analýza - funkce více proměnných (Universita J.E.Purkyně, Ústí n. L.)
- Ondřej Zindulka: Vektorové pole (stavební fakulta ČVUT Praha)
- Jiří Brabec: Matematická analýza II. (stavební fakulta ČVUT Praha)
- František Mošna: Inženýrská matematika (ČZU Praha)


Poslední úprava: MOSNAF/PEDF.CUNI.CZ (18.11.2011)
Metody výuky -

Přednáška a cvičení.

Poslední úprava: JANCARIK/PEDF.CUNI.CZ (27.05.2010)
Požadavky ke zkoušce -

zápočet - přiměřená aktivní účast, semestrový test, který prokáže schopnost manipulovat se zavedenými pojmy a užívat probrané znalosti a souvislosti na příkladech (dva příklady z diferenciálního počtu, jeden příklad z integrálního počtu)

zkouška - porozumění probraným pojmům, vztahům a souvislostem ve třech otázkách (první otázka se týká nějakého pojmu - definice, zavedení..., druhá otázka nějakého postupu, metody, odvození, ve třetí otázce má student rozhodnout o platnosti předloženého tvrzení a své rozhodnutí zdůvodnit nebo podepřít protipříkladem)

Poslední úprava: MOSNAF/PEDF.CUNI.CZ (18.11.2011)
Sylabus -
Úvodní část
  • opakování - lineární vektorové prostory, skalární, vektorový a vnější součin (geometrický význam, determinanty), přímky - rovnice obecné, směrnicové a parametrické, parametrizace souhlasící se vzdáleností, roviny, funkce
  • konvergence, okolí, vzdálenost bodů (metrika, norma - euklidovská, součtová, maximální), body vnitřní, vnější, hraniční, hromadné, izolované, množiny otevřené, uzavřené, omezené, konvexní, souvislé, kompaktní, oblast.
Diferenciální počet
  • reálné funkce více proměnných (R2->R), definiční obor, vrstevnice, řezy, limita (na množině, na definičním oboru), spojitost
  • derivace ve směru (Gâteův diferenciál a derivace), parciální derivace, totální diferenciál (Fr?chetova derivace), vzájemné vztahy, věty o derivacích a diferenciálu (protipříklady), gradient (V) - geometrický význam
  • derivace vyšších řádů (záměnnost smíšených druhých derivací), druhý diferenciál, Taylorova věta
  • extrémy lokální, absolutní, vázané extrémy (metoda substituční a Lagrangeovy multiplikátory)
  • Banachova věta o pevném bodu, věta o implicitně zadané funkci, počítání derivací, diferenciálů, tečen, tečných rovin
  • transformace souřadnic (R2->R2, R3->R3) - polární, (cylindrické), sférické
Integrální počet
  • vícenásobný (dvojný, trojný) integrál, výpočet obsahu (kruhu), objemu (koule, kužele), těžiště (trojúhelníku, čtyřstěnu), momentů, Fubiniova věta, věta o substituci - souvislost determinantu a objemu, obsahu
  • křivky v R2 (vyjádření explicitní, implicitní, parametrické), tečna, normála, délka křivky (kružnice), divergence, (3. složka rotace), křivkový integrál, Greenova věta
  • křivky v R3 (vyjádření parametrické), tečna, hlavní normála, binormála
  • plochy v R3 (vyjádření explicitní, implicitní, parametrické), tečná rovina, normála, obsah (povrch koule, plášť kužele), body na ploše (eliptické, hyperbolické,..., asymptotické směry), divergence, rotace, plošný integrál, Stokesova, Gaussova-Ostrogradského věta.
Poslední úprava: JANCARIK/PEDF.CUNI.CZ (27.05.2010)
 
Univerzita Karlova | Informační systém UK