PředmětyPředměty(verze: 962)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Matematika b - OK0410102
Anglický název: Mathematics b
Zajišťuje: Katedra matematiky a didaktiky matematiky (41-KMDM)
Fakulta: Pedagogická fakulta
Platnost: od 2022
Semestr: letní
E-Kredity: 0
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:0/0, KZ [HS]
Rozsah za akademický rok: 20 [hodiny]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: kombinovaný
Způsob výuky: kombinovaný
Další informace: http://zajišťuje výuku pro OCRN17UC09 - Geometrie s didaktikou II
Poznámka: předmět je možno zapsat mimo plán
při zápisu přednost, je-li ve stud. plánu
Garant: Mgr. Jaroslava Kloboučková
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Kurz geometrie s didaktikou je zaměřen nejen na rozsah vědomostí studentů, ale i na rozvoj kognitivních schopností. Na základě experimentální činnosti jsou studenti vedeni k samostatnému objevování geometrických vztahů, upřesňování pojmů a rozvíjení geometrických představ. Některé mnohoúhelníky jsou poznávány a hlouběji studovány v prostředí čtverečkovaného papíru. Dále jsou studovány relační pojmy rovnoběžnost, kolmost, různoběžnost, shodnost (úseček, úhlů, útvarů), některá shodná zobrazení a míra geometrických útvarů. Nové poznatky jsou studovány i v jiných geometrických prostředích.
Poslední úprava: Kloboučková Jaroslava, Mgr. (20.05.2019)
Literatura

Hejný, M., Jirotková, D. (1999). Čtverečkovaný papír jako most mezi geometrií a aritmetikou. Univerzita Karlova v Praze, Pedagogická fakulta.

Blažková, R., Matoušková, K., Vaňurová, M., Staudková, H.: Matematika pro 3. ročník základních škol. Nakladatelství ALTER, Všeň. 2009

Blažková, R., Matoušková, K., Vaňurová, M.,: Matematika pro 4. ročník základních škol. Nakladatelství ALTER, Všeň. 2009

Justová, J.: Matematika pro 5. ročník základních škol. Nakladatelství ALTER, Všeň. 2008

Hejný, M., Jirotková, D., Slezáková-Kratochvílová, J. Michnová, J.: MATEMATIKA 3, učebnice pro základní školy. Nakladatelství Fraus, Plzeň 2009

Hejný, M., Jirotková, D., Bomerová, E.: MATEMATIKA 4, učebnice pro základní školy. Nakladatelství Fraus, Plzeň 2010

Hejný, M., Jirotková, D., Bomerová, E., Michnová, J.: MATEMATIKA 5, učebnice pro základní školy. Nakladatelství Fraus, Plzeň 2011

Různé sbírky úloh a matematických problémů, soubory úloh z Klokánka či jiných soutěží pro žáky 1. stupně ZŠ, výběr úloh 2D geometrie.

Další učebnice matematiky pro I. stupeň dle vlastní volby.

Jirotková, D.: Cesty ke zkvalitňování výuky geometrie. Univerzita Karlova v Praze. 2010 (s. 7 - 201)

Hejný, M.: Vyučování matematice orientované na budování schémat: aritmetika 1. stupně. Univerzita Karlova v Praze. 2014

Program GeoGebra: odkaz na stránku, kde je možné stáhnout verze pro různé operační systémy od Windows až po tablety: https://www.geogebra.org/download a další odkaz na manuál: https://wiki.geogebra.org/cs/P%C5%99%C3%ADru%C4%8Dka

 

Poslední úprava: Kloboučková Jaroslava, Mgr. (20.05.2019)
Sylabus

Obsah kurzu:
Studenti jsou vedeni k co nejsamostatnějšímu postupu, k samostatnému objevování myšlenek a nikoliv k jejich přejímání.
V prostředí čtverečkovaného papíru budou poznávány geometrické rovinné útvary, budou popisovány pomocí jejich průvodních jevů, budou zkoumány i jejich metrické vlastnosti jako délky úseček, obsahy rovinných útvarů, velikosti úhlů. Vyjadřování vzájemné polohy bodů pomocí "cestování" na čtverečkovaném papíru položí základy vektorové algebry a umožní též formulovat úlohy kombinatorického charakteru. Bude podrobně probrána metoda postupného uvolňování konstanty jako jedna z nejpoužitelnějších metod při objevování nejen geometrických vztahů. Využije se i k odhalení Pickovy formule i Pythagorovy věty.
Celý semestr bude provázet v různých modifikacích i didaktická matematická hra SOVA, která povede i k poznávání 3-D útvarů.

Témata výuky:

1. Orientace na čtverečkovaném papíru

2. Souřadnice, jejich odvození; další zápisy bodů (souřadnicový zápis, vektorový zápis)

3. Trojúhelníky, jejich klasifikace, průvodní jevy a vlastnosti

4. Čtyřúhelníky, jejich klasifikace, průvodní jevy a vlastnosti

5. Relace (rovnoběžnost, kolmost, shodnost)

6. Obsah rovinných útvarů (metoda stříhání, rámování, aj.)

7. Délka úsečky, obvod obrazce

8. Pythagorova věta (metoda uvolňování parametru)

9. Pickova formule (metoda uvolňování parametru)

10. Poměr úseček, dělení úseček v daném poměru.

11. Nemřížové útvary

12. Podobné útvary

Poslední úprava: Kloboučková Jaroslava, Mgr. (20.05.2019)
Podmínky zakončení předmětu

A Požadavky k získání zápočtu:

1. Aktivní účast na seminářích (aktivitou se rozumí účast ve společných diskuzích, samostatné řešení úloh a problémů a jejich prezentování, atd.).

2. Vypracování závěrečného testu na alespoň 60 % možných bodů. Opakované vypracovaní zápočtového testu je možné pouze jedenkrát, a to po dohodě s vedoucím semináře.



B Požadavky ke zkoušce
Zkouška je písemná i ústní. Podkladem k hodnocení studenta bude výsledek písemného testu. Zkouší vedoucí semináře.

Kromě ústního projevu u zkoušky budou podkladem k hodnocení výsledky testu a veškerých písemných materiálů, které byly vypracovány k zápočtu navíc a jeho aktivita při seminářích.

Zkoušející má právo na základě výsledků písemných prací a práce v semináři navrhnout studentovi známku bez ústní zkoušky. Pokud s ní student nebude spokojen, přihlásí se k ústní zkoušce.

Poslední úprava: Kloboučková Jaroslava, Mgr. (20.05.2019)
 
Univerzita Karlova | Informační systém UK