PředmětyPředměty(verze: 835)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Speciální teorie relativity - NOFY023
Anglický název: Special Theory of Relativity
Zajišťuje: Kabinet výuky obecné fyziky (32-KVOF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018 do 2019
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Další informace: http://utf.mff.cuni.cz/vyuka/NOFY023/
Garant: doc. RNDr. Oldřich Semerák, DSc.
RNDr. Otakar Svítek, Ph.D.
prof. RNDr. Pavel Krtouš, Ph.D.
Kategorizace předmětu: Fyzika > Předměty obecného základu
Anotace -
Poslední úprava: T_UTF (17.04.2009)

Experimentální základ a výchozí principy speciální teorie relativity, jejich bezprostřední důsledky a Lorentzova transformace. Minkowského prostoročas, tenzorový zápis fyzikálních zákonů. Relativistická mechanika. Relativistická elektrodynamika ve vakuu. Vzhled objektů ve speciální relativitě. Variační principy. Pro 2. ročník F.
Cíl předmětu -
Poslední úprava: T_UTF (17.04.2009)

Experimentální základ a výchozí principy speciální teorie relativity. Lorentzova transformace a její bezprostřední důsledky. Minkowského prostoročas, tenzory. Relativistická mechanika. Relativistická elektrodynamika ve vakuu. Vzhled objektů ve speciální relativitě. Variační principy a Lagrangeovy rovnice.

Literatura
Poslední úprava: T_UTF (17.04.2009)

  • Votruba V.: Základy speciální teorie relativity (Academia, Praha 1969)
  • Horský J.: Speciální teorie relativity (SPN, Praha 1972)
  • Horský J., Novotný J., Štefaník M.: Mechanika ve fyzice (Academia, Praha 2001)
  • Kvasnica J.: Teorie elektromagnetického pole (Academia, Praha 1985)
  • Taylor E. F., Wheeler J. A.: Spacetime Physics, (Freeman, San Francisco 1992)
  • Misner C. W., Thorne K. S., Wheeler J. A.: Gravitation (Freeman, San Francisco 1973)

Metody výuky
Poslední úprava: T_UTF (17.04.2009)

přednáška

Požadavky ke zkoušce
Poslední úprava: T_UTF (17.04.2009)

Zkouška je ústní, požadavky odpovídají sylabu, v detailech pak tomu, co bylo během semestru odpřednášeno.

Sylabus -
Poslední úprava: T_UTF (17.04.2009)

RELATIVISTICKÁ KINEMATIKA

STR jako teorie prostoru a času
Od Newtona k Einsteinovi. Základní kameny STR. Kauzální struktura. Inerciální struktura. Metrická struktura.

Budování geometrie prostoročasu
Současnost a synchronizace hodin. Prostorové vzdálenosti a prostorová geometrie. Inerciální soustavy. Poznámka o jednotkách času a vzdálenosti. Prostoročasový interval.

Minkowského geometrie
Základy Minkowského geometrie. Lorentzovy transformace. Vsuvka o hypebolických funkcích. Hyperbolická goniometrie.

Veličiny měřené z hlediska inerciální soustavy
Rozštěpení prostoročasu na prostor a čas. Dilatace času. Kontrakce délek. Skládání rychlostí.

Matematický aparát
Prostoročas jako čtyřdimenzionální affiní prostor. Minkowského geometrie. Časové a prostorové složky. Transformace komponent tenzorů. Globální a lokální popis.

Symetrie Minkowského prostoročasu
Isometrie Minkowského geometrie. Lorentzova grupa. Obecné skládání rychlostí.

Popis světočáry, relativistické efekty a “paradoxy”
Popis světočáry částice. Rozštěpení na prostor a čas. Hyperbolický pohyb. Paradox dvojčat. Kruhový pohyb. Relativistické efekty a “paradoxy”.

Šíření světelného signálu a vzhled objektů
Doplerův jev a aberace. Vzhled objektů. Michelsonův-Morleyův experiment.

.

RELATIVISTICKÁ DYNAMIKA

Relativistické srážky
4-hybnost a klidová hmotnost. Zákon zachování 4-hybnosti. Nerelativistické srážky. Rozštěpení 4-hybnosti. Nejjednodušší relativistické srážky.

Dynamika relativistické částice
Relativistická pohybová rovnice, 4-síla. Druhy 4-síl. Mechanické modely 4-síly. 4-síla generovaná polem. Síla pro hyperbolický pohyb.

Relativistická formulace elektrodynamiky
Klasická formulace. 4-tok náboje. 4-potenciál a Maxwellův tenzor. Relativistický tvar Maxwellových rovnic. Lorentzova 4-síla. 4-potenciál a kalibrační volnost. Duál Maxwellova tenzoru a skalární invarianty. Lorentzova transformace elektromagnetického pole. Pole lineárního vodiče s proudem.

Akční principy pro relativistickou částici
Geometrická akce pro relativistickou částici. Lagrangeův formalismus ve zvolené inerciální soustavě. Kvadratická akce pro relativistickou částici. Princip nejmenší akce pro srážky.

Akční principy pro pole
Variace podle pole. Skalární pole. Elektromagnetické pole.

Popis kontinua a lokální zákony zachování
Kontinuum a jeho prostoročasový popis. Popis extenzivních veličin. Rovnice kontinuity pro extenzivní veličinu. Bilance extenzivní veličiny v laboratorní soustavě.

Nabitý hmotný prach a tenzor energie-hybnosti
Nekoherentní prach. Pohybová rovnice jak bilance tenzoru energie-hybnosti. Tenzor energie-hybnosti pole. Ideální kapalina. Metrický tenzor energie-hybnosti.

.

 
Univerzita Karlova | Informační systém UK