PředmětyPředměty(verze: 904)
Předmět, akademický rok 2022/2023
   Přihlásit přes CAS
Analýza maticových iteračních metod – principy a souvislosti - NMNV412
Anglický název: Analysis of matrix iterative methods - principles and interconnections
Zajišťuje: Katedra numerické matematiky (32-KNM)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2021
Semestr: letní
E-Kredity: 6
Rozsah, examinace: letní s.:4/0 [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Virtuální mobilita / počet míst: ano / neomezen
Kompetence: 4EU+ Flagship 3
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Garant: prof. Ing. Zdeněk Strakoš, DrSc.
Třída: M Mgr. MMIB > Povinně volitelné
M Mgr. NVM > Povinné
Kategorizace předmětu: Matematika > Numerická analýza
Je záměnnost pro: NMNV407
Anotace -
Poslední úprava: doc. RNDr. Václav Kučera, Ph.D. (15.01.2019)
Předmět je věnován matematickému základu maticových iteračních metod, zejména metod krylovovských podprostorů, v souvislostech s oblastmi matematiky a informatiky, které jsou důležité pro porozumění základních principů a současného stavu poznání. Bude formulovat otevřené otázky a vysvětlovat existující obecně rozšířená nedorozumění jdoucí napříč obory, která brání jak hlubšímu porozumění a rozvoji teorie, tak efektivnímu používání metod v aplikacích.
Cíl předmětu -
Poslední úprava: doc. RNDr. Václav Kučera, Ph.D. (09.12.2018)

Cílem je pomoci studentům rozvíjet na příkladu studia Krylovovských

metod schopnost vidění celeho kontextu, hledání hlubokých souvislostí

a překonávání úzce specializovaného pohledu, který omezuje v tolik

potřebnou komunikaci mezi jednotlivými obory.

Literatura -
Poslední úprava: doc. RNDr. Václav Kučera, Ph.D. (15.01.2019)

J. Liesen, Z. Strakoš, Krylov Subspace Methods, Principles and Analysis, Oxford University Press, Oxford, 2013.

J. Málek, Z. Strakoš, Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs, SIAM, Philadelphia, 2015.

Požadavky ke zkoušce -
Poslední úprava: prof. Ing. Zdeněk Strakoš, DrSc. (09.03.2021)

Zkouška bude pouze ústní a bude provedena diskusí studovaných témat v rozsahu odpovídajícím přednášce.

Sylabus -
Poslední úprava: doc. RNDr. Václav Kučera, Ph.D. (15.01.2019)

Přednáška se zaměřuje na projekční metody, zvláště pak na metody založené na krylovovských podprostorech, jejich vztah k problému momentů a související otázky. Důraz bude kladen na propojení s příslušnými tématy pocházejícími z různých disciplín, včetně numerického řešení parciálních diferenciálních rovnic, teorie aproximace a funkcionální analýzy.

1. Projekční procesy.

2. Matematická charakterizace metod krylovovských podprostorů.

3. Odvození základní metody.

4. Stieltjesův problém momentů.

5. Ortogonalní polynomy, řetězové zlomky, Gauss-Christoffelova kvadratura a redukce modelu.

6. Maticová reprezentace a metoda sdružených gradientů.

7. Vorobjevův problém momentů a zobecnění na nesymetrický případ.

8. Nedostatečnost spektrální informace.

 
Univerzita Karlova | Informační systém UK