PředmětyPředměty(verze: 962)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
V sobotu dne 19. 10. 2024 dojde k odstávce některých součástí informačního systému. Nedostupná bude zejména práce se soubory v modulech závěrečných prací. Svoje požadavky, prosím, odložte na pozdější dobu.
Teorie míry a integrálu - NMMA203
Anglický název: Measure and Integration Theory
Zajišťuje: Katedra matematické analýzy (32-KMA)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2020
Semestr: zimní
E-Kredity: 8
Rozsah, examinace: zimní s.:4/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Třída: M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 2. ročník
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 2. ročník
Kategorizace předmětu: Matematika > Reálná a komplexní analýza
Neslučitelnost : {Stará Teorie míry a integrálu I a II}
Prerekvizity : {Aspoň jedna analýza 1. roč.}
Záměnnost : {Stará Teorie míry a integrálu I a II}, NMMA205
Je neslučitelnost pro: NMMA903, NMMA205
Je záměnnost pro: NMMA205, NMMA903, NMAA070, NMAA069
Ve slož. prerekvizitě: NMMA331
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základní přednáška z teorie míry a integrálu. Povinný předmět pro bakalářské obory OM a MMIB.
Poslední úprava: G_M (16.05.2012)
Cíl předmětu -

Teorie míry a abstraktního Lebesgueova integrálu jako základ pro další studium moderní matematické analýzy a teorie pravděpodobnosti.

Poslední úprava: G_M (27.04.2012)
Podmínky zakončení předmětu

Zápočet: Pro získání zápočtu je potřeba

  • účast na alespoň 7 cvičeních
  • úspěšné napsání zápočtových písemek - v rámci cvičení se budou psát 2 zápočtové písemky, každá za 10 bodů. Úspěšné napsání znamená, že student získá dohromady 12 a více bodů.
  • chybějící body je možné nahradit další prací podle pokynů cvičícího.

Charakter zápočtu neumožňuje jeho opakování.

Zkouška: podmínkou připuštění ke zkoušce je udělený zápočet. Zkouška má část písemnou a ústní, k ústní části lze postoupit po splnění části písemné.

U ústní zkoušky je třeba znát odpřednesenou látku včetně důkazů a ilustrativních příkladů.

Poslední úprava: Kaplický Petr, doc. Mgr., Ph.D. (03.10.2019)
Literatura

W. Rudin: Analýza v reálném a komplexním oboru, Academia, Praha, 2003

J. Lukeš, J. Malý: Míra a integrál (Measure and integral), skripta MFF

J. Kopáček: Matematická analýza pro fyziky III, skripta MFF

J. Lukeš: Příklady z matematické analýzy I. Příklady k teorii Lebesgueova integrálu, skripta MFF

I. Netuka, J. Veselý: Příklady z matematické analýzy. Míra a integrál, skripta MFF

Poslední úprava: Malý Jan, prof. RNDr., DrSc. (07.11.2018)
Metody výuky -

přednáška a cvičení

Poslední úprava: G_M (27.04.2012)
Požadavky ke zkoušce

Zkouška sestává z písemné a ústní části. Písemné část předchází části ústní a její nesplnění znamená, že celá zkouška je hodnocena známkou nevyhověl(a) a ústní částí se již nepokračuje. Po úspěšném složení písemné části následuje část ústní. Nesložení ústní části znamená, že při příštím termínu je nutno opakovat obě části zkoušky, písemnou i ústní. Známka ze zkoušky se stanoví na základě hodnocení písemné i ústní části.

Písemná část sestává z tří příkladů ověřujících početní dovednosti procvičované na cvičení.

Požadavky u ústní části zkoušky odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Poslední úprava: Kaplický Petr, doc. Mgr., Ph.D. (03.10.2019)
Sylabus -
1. Základní pojmy teorie míry

a) Množinové systémy, pojem míry

b) Měřitelné funkce

2. Konstrukce integrálu

a) Definice integrálu z míry

b) Leviho věta

c) Linearita integrálu

3. Konstrukce míry

a) Abstraktní vnější míra

b) Carathéodoryho věta

c) Konstrukce Lebesgueovy míry

4. Teorie integrálu

a) Souvislost s Newtonovým integrálem

b) Záměna limity a integrálu, řady a integrálu

c) Integrál závislý na parametru

5. Teorie míry

a) Dynkinovy systémy a jednoznačnost

b) Rozšiřování pramíry, Hopfova věta

c) Znaménkové míry

d) Lebesgueův rozklad a Radon-Nikodýmova věta

e) Konvergence s.v., podle míry, Jegorovova věta

f) Měřitelná zobrazení a obraz míry

6. Vícerozměrná integrace

a) Součin měr a Fubiniova věta

b) Věta o substituci

c) Polární a sférické souřadnice

7. L^p prostory

a) Základní definice, rozdělení funkcí na třídy ekvivalence

b) Hölderova a Minkowského nerovnost

c) Úplnost

8. Lebesgue-Stieltjesův integrál

a) Regularita měr

b) Lebesgue-Stieltjesovy míry a distribuční funkce

c) Per partes pro LS integrál

d) Absolutně spojitý a diskrétní případ

Poslední úprava: Malý Jan, prof. RNDr., DrSc. (05.11.2013)
Vstupní požadavky -

Znalosti matematické analýzy na úrovni přednášek NMMA101, NMMA102

Poslední úprava: Malý Jan, prof. RNDr., DrSc. (10.05.2018)
 
Univerzita Karlova | Informační systém UK