PředmětyPředměty(verze: 845)
Předmět, akademický rok 2018/2019
   Přihlásit přes CAS
Optimalizace a variační analýza - NMEK603
Anglický název: Optimization and variational analysis
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2016
Semestr: oba
E-Kredity: 3
Rozsah, examinace: 2/0 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Poznámka: předmět lze zapsat opakovaně
předmět lze zapsat v ZS i LS
Garant: doc. RNDr. Petr Lachout, CSc.
Třída: Pravděp. a statistika, ekonometrie a fin. mat.
Kategorizace předmětu: Matematika > Optimalizace
Anotace -
Poslední úprava: T_KPMS (06.05.2014)
Přednáška zaměřená na základy moderní optimalizace a stability úloh stochastického programování. Je koncipována pro studenty doktorandského studia.
Cíl předmětu -
Poslední úprava: T_KPMS (06.05.2014)

Vybudovat základy moderní nekonvexní optimalizace a rozvinout studium stability úloh stochastického programování. Aplikovat tento aparát na vybrané stochastické optimalizační úlohy.

Podmínky zakončení předmětu -
Poslední úprava: doc. RNDr. Petr Lachout, CSc. (10.10.2017)

K zakončení předmětu je nutno úspěšně složit zkoušku.

Literatura
Poslední úprava: T_KPMS (06.05.2014)

[1] Bonnans, J. F.; Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, 2000.

[2] Rockafellar, R.T.; Wets, R. J.-B.: Variational Analysis, Springer, Berlin 1998.

[3] Ruszczyński, A.; Shapiro, A; Eds.: "Stochastic Programming. Handbooks in OR & MS, volume 10,". Elsevier, Amsterdam, 2003.

[4] Shapiro, A.; Dentcheva, D.; Ruszczyński, A.: "Lectures on Stochastic Programming: Modeling and Theory". MPS-SIAM, Philadelphia, 2009.

Metody výuky -
Poslední úprava: T_KPMS (06.05.2014)

Přednáška.

Požadavky ke zkoušce -
Poslední úprava: doc. RNDr. Petr Lachout, CSc. (10.10.2017)

Zkouška má pouze ústní část.

Známka ze zkoušky se stanoví na základě hodnocení ústní části.

U zkoušky je zkoušena látka v rozsahu odpředneseném na přednášce.

Sylabus -
Poslední úprava: T_KPMS (06.05.2014)

Variační analýza

1) Konvexní analýza v konečné dimenzi.

2) Kužely a kosmický uzávěr.

3) Konvergence množin.

4) Multifunkce.

5) Epi-konvergence.

6) Variační analýza.

7) Subgradient a subdiferenciál.

8) Lipschitzovské vlastnosti.

9) Legendreova-Fenchelova dualita.

Citlivost úloh stochastického programování.

1) Stabilita v úlohách stochastického programování.

2) Metody parametrické optimalizace. Pravděpodobnostní metriky.

3) Metody asymptotické a robustní statistiky.

Vstupní požadavky -
Poslední úprava: doc. RNDr. Petr Lachout, CSc. (30.05.2018)

základy teorie optimalizace, konvexní analýza

 
Univerzita Karlova | Informační systém UK