Základní přednáška z univerzální algebry pro obor Matematické struktury.
Poslední úprava: T_KA (14.05.2013)
Basic course in universal algebra.
Poslední úprava: T_KA (14.05.2013)
Podmínky zakončení předmětu -
It is necessary to score at least 60% on 3 homework assignments to obtain "Zápočet" and be admitted to the exam.
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
It is necessary to score at least 60% on 3 homework assignments to obtain "Zápočet" and be admitted to the exam.
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
Literatura -
There will be lecture notes for the course. Several (but not all) of the topics are also discussed in the book
C. Bergman: "Universal Algebra: Fundamentals and Selected Topics",
which can be found in our library.
Various sources for further reading:
S. Burris, H. P. Sankappanavar: "A course in universal algebra." Springer-Verlag, 1981.
L. Barto, A. Krokhin, R. Willard: "Polymorphisms, and how to use them", Dagstuhl Follow-Ups. Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
L. Barto, M. Kozik: "Absorbing subalgebras, cyclic terms and the constraint satisfaction problem", Logical Methods in Computer Science 8/1:07 (2012), 1-26.
J. Jezek: "Universal Algebra"
R. McKenzie, G. McNulty, W. Taylor: "Algebras, Lattices, Varieties", vol. 1. Wadsworth and Brooks/Cole, 1987.
R. Freese, R. McKenzie: "Commutator theory for congruence modular varieties", LMS Lecture Notes, Vol. 125, Cambridge, 1987.
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
There will be lecture notes for the course. Several (but not all) of the topics are also discussed in the book
C. Bergman: "Universal Algebra: Fundamentals and Selected Topics",
which can be found in our library.
Various sources for further reading:
S. Burris, H. P. Sankappanavar: "A course in universal algebra." Springer-Verlag, 1981.
L. Barto, A. Krokhin, R. Willard: "Polymorphisms, and how to use them", Dagstuhl Follow-Ups. Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
L. Barto, M. Kozik: "Absorbing subalgebras, cyclic terms and the constraint satisfaction problem", Logical Methods in Computer Science 8/1:07 (2012), 1-26.
J. Jezek: "Universal Algebra"
R. McKenzie, G. McNulty, W. Taylor: "Algebras, Lattices, Varieties", vol. 1. Wadsworth and Brooks/Cole, 1987.
R. Freese, R. McKenzie: "Commutator theory for congruence modular varieties", LMS Lecture Notes, Vol. 125, Cambridge, 1987.
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
Požadavky ke zkoušce -
Předmět bude zakončen ústní zkouškou v rozsahu podle sylabu předmětu.
Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (24.05.2019)
The final mark is determined by an oral exam.
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
Sylabus -
This course offers an introduction to selected topics in universal algebra that are connected to the research interests of the algebra group. In summer semester 2022 this includes:
Term rewriting systems and the Knuth-Bendix algorithm
Abelianness and basics of commutator theory
Finitely based algebras
The study of Maltsev conditions (Taylor terms) and their relevance to CSPs
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
This course offers an introduction to selected topics in universal algebra that are connected to the research interests of the algebra group. In summer semester 2022 this includes:
Term rewriting systems and the Knuth-Bendix algorithm
Abelianness and basics of commutator theory
Finitely based algebras
The study of Maltsev conditions (Taylor terms) and their relevance to CSPs
Poslední úprava: Kompatscher Michael, Ph.D. (14.02.2022)
Vstupní požadavky -
Znalosti na úrovni přednášky Universální algebra 1.
Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)
Knowledge on level of the course Universal Algebra 1.
Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)