PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Riemannovy plochy - NMAG433
Anglický název: Riemann Surfaces
Zajišťuje: Matematický ústav UK (32-MUUK)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2023
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Garant: Dr. Re O'Buachalla, Dr.
Vyučující: Dr. Re O'Buachalla, Dr.
Třída: M Mgr. MA
M Mgr. MA > Povinně volitelné
M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Kategorizace předmětu: Matematika > Geometrie, Reálná a komplexní analýza
Anotace -
V přednášce se budeme věnovat převážně topologickým a analytickým vlastnostem Riemannových ploch a holomorfními zobrazeními mezi nimi. Základními pojmy, které se budeme snažit vysvětlit, jsou nakrytí, homotopická grupa, svazky, divizory, Čechova kohomologie a Riemann-Rochova věta ve své analytické verzi.
Poslední úprava: Lávička Roman, doc. RNDr., Ph.D. (13.09.2013)
Cíl předmětu -

Porozumět základům (algebraickým, geometrickým, funkčně teoretickým a topologickým) Riemannových ploch.

Poslední úprava: Somberg Petr, doc. RNDr., Ph.D. (28.10.2019)
Podmínky zakončení předmětu -

Pro absolvování předmětu je potřeba složit zkoušku.

Poslední úprava: Lávička Roman, doc. RNDr., Ph.D. (23.06.2021)
Literatura -

Bost, J., From Number theory to Physics, Springer, 2010.

Forster, O., Lectures on Riemann surfaces, Springer-Verlag, Berlin, 1985.

Černý, I., Foundation of analysis in complex domain, Academia, 1997.

Narasimhan, R., Compact Riemann surfaces

Poslední úprava: Krýsl Svatopluk, doc. RNDr., Ph.D. (13.10.2017)
Metody výuky -

Přednášení založené na dostupné literatuře, jejím výběru a perspektivě přednášejícího.

Poslední úprava: Krýsl Svatopluk, doc. RNDr., Ph.D. (26.09.2017)
Požadavky ke zkoušce -

Požadavky u zkoušky odpovídají sylabu předmětu v rozsahu, který byl probrán na přednášce.

Poslední úprava: Lávička Roman, doc. RNDr., Ph.D. (23.06.2021)
Sylabus -

Definice a příklady Riemannových ploch.

Holomorfní zobrazení mezi Riemannovými plochami. Meromorfní funkce.

Riemann-Hurwitzova věta.

Eliptické funkce. Weierstrassova p-funkce. Jacobiho theta funkce.

Klasifikace Riemannových ploch (uniformizační věta).

Riemann-Rochova věta.

Poslední úprava: Lávička Roman, doc. RNDr., Ph.D. (13.09.2013)
Vstupní požadavky -

Znát základy funkcí komplexní proměnné (definici Laurentovy řady holomorfní funkce včetně).

Poslední úprava: Krýsl Svatopluk, doc. RNDr., Ph.D. (13.10.2017)
 
Univerzita Karlova | Informační systém UK