PředmětyPředměty(verze: 970)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Aplikovaná matematika IV - NMAF074
Anglický název: Applied mathematics IV
Zajišťuje: Katedra fyziky kondenzovaných látek (32-KFKL)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2021
Semestr: letní
E-Kredity: 7
Rozsah, examinace: letní s.:3/3, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: doc. RNDr. Mirko Rokyta, CSc.
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Čtvrtá přednáška čtyřsemestrálního kurzu. Základy teorie Fourierových i abstraktních Fourierových řad, Hilbertův prostor, základy komplexní analýzy. Fourierova transformace, základy teorie PDR.
Poslední úprava: Mikšová Kateřina, Mgr. (23.04.2018)
Podmínky zakončení předmětu

Zápočet ze cvičení k tomuto předmětu je nutnou podmínkou pro přistoupení ke zkoušce.

Podmínkou pro udělení započtu je zisk alespoň 50 bodů. Přičemž se budou konat dvě písemky (2 x 35 bodů), budou zadány dvě domácí úlohy (2 x 10 bodů) a hodnocena bude docházka (10 bodů).

Povaha kontroly splnění podmínek pro udělení zápočtu vylučuje opakování této kontroly, tedy zápočet se opakovat nedá.

Poslední úprava: Rokyta Mirko, doc. RNDr., CSc. (05.02.2018)
Literatura -

Kopáček, J. a kol.: Matematika pro fyziky, díly IV-V, skriptum MFF UK

Poznámky přednášejícího, vystavované na stránce předmětu

http://www.karlin.mff.cuni.cz/~rokyta/vyuka/1718/ls/F_apl_mat/index.html

Poslední úprava: Rokyta Mirko, doc. RNDr., CSc. (05.02.2018)
Požadavky ke zkoušce

Zkouška sestává z písemné a ústní části. Písemná část předchází části ústní a její nesplnění znamená, že celá zkouška je hodnocena známkou neprospěl(a) a ústní částí se již nepokračuje. Po úspěšném složení písemné části následuje část ústní. Nesložení ústní části znamená, že při příštím termínu je nutno opakovat pouze ústní část zkoušky. Známka ze zkoušky se stanoví na základě hodnocení písemné i ústní části.

Čtyři příklady u písemné části budou vybrány z těchto témat: Fourierova řada, analýza funkcí komplexní porměnné, residuová věta, Fourierova transformace.

Požadavky u ústní části zkoušky odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Poslední úprava: Kaplický Petr, doc. Mgr., Ph.D. (21.02.2020)
Sylabus -

Fourierovy řady, Besselova nerovnost a Parsevalova rovnost, derivování a integrování Fourierových řad.

Hilbertův prostor, abstraktní Fourierovy řady v Hilbertově prostoru, ortogonální systémy polynomů (Laguerrovy, Hermiteovy, Čebyševovy). Operátory v Hilbertově prostoru.

Funkce komplexní proměnné, Cauchyova věta, Cauchyův vzorec, reziduová věta a její použití k výpočtům.

Fourierova transformace pro funkce, věta o inverzi, základní použití.

Úvod do teorie parciálních diferenciálních rovnic. Rovnice vedené tepla, vlnová rovnice, Laplaceova-Poissonova rovnice.

Poslední úprava: Mikšová Kateřina, Mgr. (23.04.2018)
 
Univerzita Karlova | Informační systém UK