PředmětyPředměty(verze: 806)
Předmět, akademický rok 2017/2018
   Přihlásit přes CAS
Neuronové sítě v částicové fyzice - NJSF138
Anglický název: Neural nets in particle physics
Zajišťuje: Ústav částicové a jaderné fyziky (32-UCJF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2015
Semestr: zimní
E-Kredity: 4
Rozsah, examinace: zimní s.:2/1 Zk [hodiny/týden]
Počet míst: neomezen
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: Mgr. Tomáš Sýkora, Ph.D.
Anotace -
Poslední úprava: T_UCJF (18.04.2012)

Určeno pro 3. ročník a výše
Literatura -
Poslední úprava: T_UCJF (19.03.2015)

Christopher M. Bishop, Neural Networks for Pattern Recognition, ISBN-13: 978-0198538646

Christopher M. Bishop, Pattern Recognition and Machine Learning, ISBN-13: 978-0387310732

Sylabus -
Poslední úprava: T_UCJF (18.04.2012)

  • elementy teorie pravděpodobnosti - hustota pravděpodobnosti, kovariance, Bayesovská definice pravděpodobnosti, Gaussovo rozdělení, aproximace dat
  • rozdělení pravděpodobnosti - beta rozdělení, Dirichletovo rozdělení, metoda maximální věrohodnosti pro Gaussovské rozdělení, Studentovo t-rozdělení
  • lineární modely pro regresi - modely s lineární bází, metoda maximální věrohodnosti a metoda minimálních čtverců, postupné učení, regularizované minimální čtverce, rozklad předsudek-variance, Bayesovská lineární regrese, omezení lineárních modelů s fixovanou bází
  • lineární klasifikační modely - diskriminační funkce, pravděpodobnostní diskriminační modely, Laplaceova aproximace, Bayesovská logistická regrese
  • neuronové sítě - trénink, zpětná vazba chyby, Hessova matice, regularizace v neuronových sítích, Bayesovské neuronové sítě
  • dvojí použití neuronových sítí - aproximace a rozhodnutí

 
Univerzita Karlova | Informační systém UK