PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Vybrané partie teorie kvantovaných polí I - NJSF082
Anglický název: Selected Topics on Quantum Field Theory I
Zajišťuje: Ústav částicové a jaderné fyziky (32-UCJF)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2022
Semestr: zimní
E-Kredity: 4
Rozsah, examinace: zimní s.:3/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Garant: RNDr. Jiří Novotný, CSc.
Vyučující: RNDr. Jiří Novotný, CSc.
Kategorizace předmětu: Fyzika > Jaderná a subjaderná fyzika
Patří mezi: Doporučené přednášky 2/2
Je korekvizitou pro: NJSF083, NJSF123
Anotace -
Dráhový integrál v kvantové mechanice, jednoduché aplikace Diskrétní aproximace a operátorové uspořádání Wienerova míra Elementární dráhové integrály Gaussovské dráhové integrály, aplikace Greenovy funkce, vytvořující funkcionály Efektivní akce, adiabatická aproximace Wickova rotace a kvantová teorie při konečné teplotě Berezinův integrál Poruchová teorie, Feynmanovy grafy WKB aproximace, instantony
Poslední úprava: T_UCJF (19.03.2015)
Podmínky zakončení předmětu

Složení ústní zkoušky.

Poslední úprava: Krtička Milan, doc. Mgr., Ph.D. (10.06.2019)
Literatura -

J. Novotný, Vybrané partie z teorie kvantovaných polí,

internetová skripta, http://www-ucjf.troja.mff.cuni.cz/lecture_notes_cz.php

R.P. Feynman, A. Hibbs, Quantum mechanics and path integrals (Mc Graw Hill, New York, 1965

F.A. Berezin, The method of second quantization, Academic Press 1966

J. Glimm, A. Jaffe, Quantum physics. A functional point of view, Springer Verlag, New York, 1981

Poslední úprava: T_UCJF (19.03.2015)
Požadavky ke zkoušce

Zkouška bude ústní, požadavky odpovídají odpřednášené části sylabu, ev. doplněné o část zadanou k samostatnému nastudování.

Poslední úprava: Krtička Milan, doc. Mgr., Ph.D. (10.06.2019)
Sylabus -

1. Dráhový integrál v kvantové mechanice: jádro evolučního operátoru jako suma přes histore, Lieova-Trotterova formule, diskrétní aproximace, dráhový integrál na fázovém prostoru, problém operátorového uspořádání, dráhový integrál na konfiguračním prostoru, kanonická matice hustoty a Wienerova míra, elementární dráhové integrály (částice v poli časově zvislé vnější síly, lineární harmonický oscilátor, lineární harmonický oscilátor v poli časově závislé vnější síly), gaussovské dráhové integrály (klasická akce, van Vleckův determinant, Greenova funkce)

2. Funkcionální metody: funkcionální derivace, vytvořující funkcionály, Wickova rotace, i epsilon-členy, Greenovy funkce, kvantová statistická mechanika, partiční suma a její reprezentace dráhovým integrálem, tepelné Greenovy funkce, kvantová mechanika fermionových stupňů volnosti, Grassmanova algebra, Berezinův integrál.

Poslední úprava: ()
 
Univerzita Karlova | Informační systém UK