PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Theoretical Methods in Chemistry - MC260P146
Anglický název: Theoretical Methods in Chemistry
Zajišťuje: Katedra fyzikální a makromol. chemie (31-260)
Fakulta: Přírodovědecká fakulta
Platnost: od 2024
Semestr: zimní
E-Kredity: 5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: angličtina
Poznámka: povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: Christopher James Heard, Ph.D.
Vyučující: doc. RNDr. Lukáš Grajciar, Ph.D.
Christopher James Heard, Ph.D.
Ing. Lucie Nová, Ph.D.
prof. RNDr. Filip Uhlík, Ph.D.
Anotace - angličtina
The course Theoretical Methods in Chemistry provides an overview of basic techniques that are common in
different fields of theoretical chemistry (such as quantum and computational chemistry, chemical kinetics,
chemical and statistical thermodynamics, chemoinformatics, molecular modeling). After explaining the theoretical
background of major topics (such as electronic structure of atoms and molecules, ensembles in statistical
thermodynamics, reaction rates in chemical kinetics, …) the course describes how the resulting problems can be
solved mostly using numerical methods on a computer. The course is supplemented by a practical workshop.
Poslední úprava: Ušelová Kateřina, RNDr., Ph.D. (31.01.2022)
Literatura - angličtina
  • P. W. Atkins, J. de Paula, J. Keeler: Atkins’ Physical Chemistry, Oxford University Press, 2018, ISBN 0198769865.
  • D. A. McQuarrie, J. D. Simon: Physical Chemistry: A Molecular Approach, University Science Books, 1997, ISBN 0935702997.
  • I. Levine: Quantum Chemistry, Pearson, 2013, ISBN 0321803450.
  • P. W. Atkins, R. S. Friedman: Molecular Quantum Mechanics, Oxford University Press, 2010, ISBN 0199541426.
  • M. E. Tuckerman: Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, 2010, ISBN 0198525265.
  • S. M. Blinder, J. E. House: Mathematical Physics in Theoretical Chemistry, Elsevier, 2019, ISBN 0128136510.

Poslední úprava: Ušelová Kateřina, RNDr., Ph.D. (31.01.2022)
Požadavky ke zkoušce - angličtina

Final mark is based on the final exam (66%) and credit derived from class participation during course (33%).

Final exam is comprised equally of a (1 hr) written exam and oral exam, to cover the concepts discussed within the course materials.

Poslední úprava: Heard Christopher James, Ph.D. (05.09.2024)
Sylabus - angličtina

Lecture 1: Introduction to theoretical chemistry

History of chemical theory, development of theoeretical methods in chemistry (quantum chemistry).

Development of computational techniques.

Introduction to electronic structure theory

Concepts in modelling (accuracy/precision)

Overview of course structure

Lecture 2: Potential Energy Surfaces

Concept of PES, harmonic approximation, Born-Oppenheimer Approximation, Normal Mode analysis.

Critical points on the PES, algorithms for locating minima/transition states

Searching the PES (global optimization and statistical methods for characterising the PES)

Classification/visualization of PES

Failure of BOA and implications to chemistry/physics/biology

Lecture 3: Wavefunction methods in quantum chemistry

Single electron methods (Hartree Fock)

Variational principle

LCAO, slater determinants and basis sets

Approximations, derivations and application of HF.

Restricted/unrestricted HF

Accuracy and limitations - implications

Lecture 4: Density methods in quantum chemistry

Density-based methods (Thomas-Fermi -> density functional theory)

Accuracy and limitations

exchange and correlation

Linear response

Applications

Lecture 5: Semi-Empirical methods

Force-field methods (LJ, metallic fields, biological/protein FF)

Introduction to fitted forcefields (training and testing)

Approximate solutions to HF (INDO/MINDO)

Huckel theory for conjugated organic molcules

Coarse graining for polymers

Lecture 6: Post-HF wavefunction methods

Correlation methods (CI, perturbation theory, CCSD)

Lecture 7: Symmetry and spectroscopy

group theory in chemistry

Application of symmetry to analysis of bonding, structure and spectral properties

Lecture 8: Excited states

Failures of BOA, conical intersections, avoided crossings

Time-dependent DFT for calculation of optical response, UV-VIS spectra, photoelectron spectra

Non-adiabatic dynamics

Lecture 9 + Lecture 10: Kinetic and Dynamic Methods

·Statistical mechanics

Monte Carlo (overview)

Ensembles

Partition functions

Molecular dynamics

Collision and transition state theory

Lecture 11 + Lecture 12: Machine Learning Methods

Supervised and unsupervised learning

Clustering and characterisation (SVM)

Multivariate regression (LASSO, KRR) 

chemoinformatics/materials - LLMs, QSAR

Machine Learned Potentials (Featurization, training, active learning, delta learning, error estimation)

interpretable AI 

ML integration into tools (surrogate methods)

Poslední úprava: Heard Christopher James, Ph.D. (05.09.2024)
 
Univerzita Karlova | Informační systém UK