PředmětyPředměty(verze: 970)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Introduction into Digital Humanities and Advanced Computer Literacy - JTB166
Anglický název: Introduction into Digital Humanities and Advanced Computer Literacy
Český název: Úvod do digitálních humanitních věd a pokročilé počítačové gramotnosti
Zajišťuje: Katedra ruských a východoevropských studií (23-KRVS)
Fakulta: Fakulta sociálních věd
Platnost: od 2024 do 2024
Semestr: zimní
E-Kredity: 6
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:1/1, Z [HT]
Počet míst: neomezen / neurčen (18)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: PhDr. Jiří Kocián, Ph.D.
Mgr. Klára Kosová
Mgr. Klára Vedlichová
Vyučující: PhDr. Jiří Kocián, Ph.D.
Mgr. Klára Kosová
Mgr. Klára Vedlichová
Třída: Courses not for incoming students
Neslučitelnost : JTM078
Záměnnost : JTM078
Je neslučitelnost pro: JTM078
Je záměnnost pro: JTM078
Anotace - angličtina
The usage of computer-aided analysis of textual sources has been a natural accompaniment of computer technology proliferation since the early 1950s. As computer software and hardware became widely accessible to even non-expert users, Digital Humanities (along with other analogical monikers) experienced rapid growth during the last 30 years. If we consider the ever-growing hardware capacity, digital shifts in all of the social sciences and humanities fields, and the all-encompassing interconnectivity of the internet age, it is only logical, that formerly niche-expertize has slowly turned into standard skill or even requirements for the research practice. The rapid development and spread of AI-assisted user and research performance only hastened and deepened the ever-growing pressure on the digitalization of academia. This course ameliorates this situation by offering low-threshold, entry-level access to knowledge and skillsets important for further and deeper exploration of the matter.
Poslední úprava: Bartůšek Jaroslav, Bc. (24.09.2024)
Cíl předmětu - angličtina

Students will acquire fundamental knowledge, skills, and orientation in Digital Humanities. They become familiar with the most important concepts, operations, and subfields of DH. This course serves as an introductory class for the certified program in AI in Digital Humanities and is therefore directly connected to the other parallel and following courses aimed at a detailed understanding of ML (NPFL 112, NPFL 142, NPFL 143).

 

Poslední úprava: Bartůšek Jaroslav, Bc. (24.09.2024)
Podmínky zakončení předmětu - angličtina

Compulsory attendance; minimum 50% points in part A), B) and C) each.

A: 100-91 pts

B: 90-81 pts

C: 80-71 pts

D: 70-61 pts

E: 60-51 pts

F(failed): 50 pts or less

Poslední úprava: Vedlichová Klára, Mgr. (01.10.2024)
Literatura - angličtina

Recommended reading

Accelerating Social and Behavioral Science Through Ontology Development and Use | National Academies (n.d.). Available at: https://www.nationalacademies.org/our-work/accelerating-social-and-behavioral-science-through-ontology-development-and-use (accessed 9 October 2023).

Arnold T and Tilton L (2015) Humanities Data in R: Exploring Networks, Geospatial Data, Images, and Text. Quantitative Methods in the Humanities and Social Sciences. Cham: Springer International Publishing. Available at: https://link.springer.com/10.1007/978-3-319-20702-5 (accessed 9 October 2023).

Greenwell BB& B (n.d.) Hands-On Machine Learning with R. Available at: https://bradleyboehmke.github.io/HOML/ (accessed 9 October 2023).

Krippendorff KH (2018) Content Analysis: An Introduction to Its Methodology. Fourth edition. Los Angeles: SAGE Publications, Inc.

Piotrowski M (2012) Natural Language Processing for Historical Texts. Synthesis Lectures on Human Language Technologies. Cham: Springer International Publishing. Available at: https://link.springer.com/10.1007/978-3-031-02146-6 (accessed 9 October 2023).

R for Data Science (2e) (n.d.). Available at: https://r4ds.hadley.nz/ (accessed 9 October 2023).

Ramírez AG, Mejía JM, Martin PV, et al. (2023) Digital Humanities, Corpus and Language Technology / Humanidades Digitales, Corpus y Tecnología Del Lenguaje. University of Groningen Press. Available at: https://books.ugp.rug.nl/index.php/ugp/catalog/book/128 (accessed 1 February 2024).

Silge EH and J (n.d.) Supervised Machine Learning for Text Analysis in R. Available at: https://smltar.com/ (accessed 9 October 2023).

Poslední úprava: Bartůšek Jaroslav, Bc. (24.09.2024)
Metody výuky - angličtina

This is a bloc course with six sessions every two weeks of the semester, physical presence is required.

Students complete group tasks after each session and collaborate on a group project to produce a salient research design proposal by the end of the semester.

 

Poslední úprava: Vedlichová Klára, Mgr. (26.09.2024)
Požadavky ke zkoušce - angličtina

The final grade (100 points) comprises fulfilling three partial activities:

A) midterm (15 pts)

B) regular homework assignments (35 pts)

C) groupwork research design (50pts)

Poslední úprava: Vedlichová Klára, Mgr. (01.10.2024)
Sylabus - angličtina

The course program is organized into seven teaching sessions, each comprising two standard-length classes. Each session represents one consistent thematic/methodological bloc, split into conceptual parts, practical training, and an introduction to basic programming concepts. Each class is accompanied by a compulsory reading of (one or two journal articles) to represent best practices in research application and leads into an individual homework assignment for the off week.

1. Introduction to fundamentals of computational science and computer operation - 2. 10.

selection of group topic

2. Text from computer perspective - 9. 10.

offweek - home assigment

3. Qualitative coding - 23. 10.

offweek - home assigment

4. Text analysis I. - 6. 11.

offweek - home assigment

A. Midterm - 13. 11. 

offweek - home assigment

5. Text analysis II. - 20. 11.

offweek - home assigment

6. Data visualizations - 4. 12.

offweek - home assigment

7. Network Analysis - 18. 12.

offweek - home assigment

8. Mapping & GIS - 8. 1. 2025

getting ready for final presentation

B. Final meeting - January 2025

Poslední úprava: Vedlichová Klára, Mgr. (01.10.2024)
Vstupní požadavky - angličtina
The course is primarily for the students enrolled in the certified program in Digital Humanities. Enrollment for other students is possible per individual consultations with the course teachers.
Poslední úprava: Vedlichová Klára, Mgr. (26.09.2024)
 
Univerzita Karlova | Informační systém UK