The course is taught in person and we expect students to come to the class to attend the lectures and seminars.
The aim of the course is to provide hands-on experience in programming in Python with a special emphasis on data manipulation and processing.
Students will get the basics of Pandas, Numpy or Matplotlib and collect web data with API requests. The students will also be guided through modern social-coding and open-source technologies such as GitHub, Jupyter and Open Data.
The students will gain experience using the data from the IES website and subject evaluation protocols.
The course would make use of the DataCamp online sources (https://www.datacamp.com) to provide the students with reliable yet simple resources for learning Python programming.
Poslední úprava: Krejcar Vilém, Mgr. (01.10.2024)
Cíl předmětu -
Please switch to the english version.
Poslední úprava: SCHNELLEROVA (24.10.2019)
After passing the course, the students will be able to execute a software-based, data-oriented project in Python, specifically download the data from APIs or directly from the web, pre-process it, analyze it and visualize it. Further, they will be able to do it in a repeatable, standard software-development quality manner using version control.
Poslední úprava: Hronec Martin, Mgr. (06.02.2020)
Literatura -
Please switch to the english version.
Poslední úprava: Krejcar Vilém, Mgr. (01.10.2024)
Book
Wes McKinney: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O'Reilly, 2012
Important Note: To pass the course, students must achieve at least 50% of the points from both the work-in-progress presentation and homework assignments.
Grading scale (according to Dean's Provision 17/2018):
A: above 90 (not inclusive)
B: between 80 (not inclusive) and 90 (inclusive)
C: between 70 (not inclusive) and 80 (inclusive)
D: between 60 (not inclusive) and 70 (inclusive)
E: between 50 (not inclusive) and 60 (inclusive)
F: below 50 (inclusive)
Poslední úprava: Krejcar Vilém, Mgr. (01.10.2024)
Sylabus -
Please switch to the english version.
Poslední úprava: Krejcar Vilém, Mgr. (01.10.2024)
Course syllabus
Week
Date
L/S
Topic
Lecturer
Deadline
1
30/9
S
Seminar0:Setup(Jupyter,VScode,Git,OSbasics)
Luboš
1
1/10
L
Pythonbasics I.
Luboš
2
8/10
L
Pythonbasics II.
Luboš
3
14/10
S
Seminar1:Basics
Luboš
HW 1
3
15/10
L
Numpy
Luboš
4
22/10
L
Pandas I.
Luboš
5
29/10
L
Pandas II.
Luboš
HW 2
6
4/11
S
Seminar2:Numpy&pandas
Luboš
6
5/11
L
Data formats
Luboš
7
11/11-12/11
S,L
No seminar, no lecture
-
8
18/11
S
Dataformats&APIs
Luboš
HW 3
8
19/11
L
Algorithmicproblemsolving
Luboš
9
25/11
-
MIDTERM
Luboš & Vilém
9
26/11
L
Data science I.
Luboš
10
2/12
S
Seminar4:Midtermsolution
Vilém
10
3/12
L
Data science II.
Luboš
11
9/12
S
Seminar5:Datasciencecase-study
Vilém
11
10/12
L
Howtocode(avoidingspaghetticode)
Luboš
Project proposal
12
17/12
L
GuestLecture@TBA
TBA
13
6/1 - 8/1
-
WiP:Projectconsultations
Luboš&Vilém
14
13/1 - 15/1
-
WiP:Projectconsultations
Luboš&Vilém
Poslední úprava: Krejcar Vilém, Mgr. (01.10.2024)
Vstupní požadavky -
Please switch to the english version.
Poslední úprava: SCHNELLEROVA (24.10.2019)
Previous experience with general coding is assumed - The course is designed for students that have at least some basic coding experience. It does not need to be very advanced, but they should be aware of concepts such as for loop, if and else, variable or function.
No knowledge of Python is required for entering the course.
Poslední úprava: Hronec Martin, Mgr. (06.02.2020)
Požadavky k zápisu -
Please switch to the english version.
Poslední úprava: SCHNELLEROVA (24.10.2019)
The course is primarily for master and advanced bachelor students.