|
|
|
||
Introductory course to Data Science with applications in the R programming environment. Special focus is put on data visualization, data & text mining, and machine learning methods. Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (23.09.2016)
|
|
||
The main aim of the course is to train students to be able to properly analyze specific datasets with methods outside of standard econometric framework using the R programming environment. Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (23.09.2016)
|
|
||
Mandatory literature:
Additional suggested literature:
Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (25.09.2017)
|
|
||
Lectures + Seminars (2 parallel classes, Tuesdays and Wednesdays):
Software: R and RStudio (available on all computers in room 016) Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (01.10.2018)
|
|
||
The final grade consists of three ingredients:
Grading scale (according to Dean's Provision 17/2018):
DataCamp.com assignments:
Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (10.10.2018)
|
|
||
Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (01.10.2018)
|
|
||
There are no formal course requirements. However, knowledge up to the level of Statisics (JEB105) and Econometrics I (JEB109) courses is assumed and expected. Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (26.09.2016)
|
|
||
There are no formal course requirements. However, knowledge up to the level of Statisics (JEB105) and Econometrics I (JEB109) courses is assumed and expected. Poslední úprava: Krištoufek Ladislav, prof. PhDr., Ph.D. (26.09.2016)
|