PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Statistika - JCM001
Anglický název: Statistics
Zajišťuje: CERGE (23-CERGE)
Fakulta: Fakulta sociálních věd
Platnost: od 2022
Semestr: zimní
E-Kredity: 9
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:4/2, Zk [HT]
Počet míst: 30 / neurčen (20)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: prof. RNDr. Jan Hanousek, CSc., DSc.
Vyučující: Clara Sievert, Ph.D.
Paolo Zacchia, Ph.D.
Je prerekvizitou pro: JCM002
Deskriptory - angličtina

This is a graduate level introductory course in mathematical probability and statistics: its objective is to provide students with key conceptual tools that are necessary for additional training in econometrics and microeconomics. Beginning from basic axiomatic definitions of probability, the course introduces univariate and multivariate probability distributions, samples and statistics, concepts of estimation and inference, some key asymptotic results, and it concludes with an introduction to linear projections and regression, whose properties are emphasized in preparation for further coursework in econometrics.

 

Poslední úprava: Papariga Anna, Mgr. (15.09.2022)
Literatura - angličtina

·         Main material: class notes prepared by the lecturer and made available to students.

·         George Casella and Roger L. Berger (2001), Statistical Inference, Duxbury Press.

·         Bruce E. Hansen (2022), Probability and Statistics for Economists (first volume) & Econometrics (second volume), a two-volumes series available on the author’s website.

 

 

Poslední úprava: Papariga Anna, Mgr. (15.09.2022)
Požadavky ke zkoušce - angličtina

The final evaluation for this course is determined as follows: a midterm exam accounts for 30% of the grade; a final exam counts for 50%, while the remaining 20% is based on the performance in regular assignments with an approximately biweekly expected cadence

Poslední úprava: Papariga Anna, Mgr. (15.09.2022)
Sylabus - angličtina

·         Events and probabilities

        i.            Axiomatic definition of probability

      ii.            Conditional probability, independence and Bayes’ Rule

    iii.            Random variables and univariate distribution functions

    iv.            Functions and transformation of random variables

       v.            Moments and moment generating functions

 

·         Univariate probability distributions

i.        Discrete distributions: Bernoulli, binomial, negative binomial, (hyper)geometric, Poisson

ii.      Continuous distributions I: normal, lognormal, logistic, Cauchy, Laplace

iii.    Continuous distributions II: Beta, Gamma and their special cases, F, Student’s t, Pareto

iv.    Continuous distributions III: extreme values: Gumbel, Fréchet and (reverse) Weibull

 

·         Multivariate probability distributions

i.        Random vectors, joint distributions, marginal distributions, transformations

ii.      Independence of random variables and vectors, random products and random ratios

iii.    Moments of random vectors, covariance, correlation

iv.    Multivariate moment generation, sum of independent random variables

v.       Conditional distributions and moments, Law of Iterated Expectations, Law of Total Variance

vi.    Key multivariate distributions: multinomial, multivariate normal

 

·         Samples and sample statistics

i.        Samples, random samples and their properties

ii.      Sampling from the univariate and multivariate normal distributions

iii.    Order statistics and some key associated results

iv.    The sufficiency principle and sufficient statistics

 

·         Estimation and Inference

i.        Point estimation: the method of moments and maximum likelihood estimation

ii.      Evaluating estimators: loss functions, unbiasedness, consistency, the Cramér-Rao bound

iii.    Inference: tests of hypotheses, and analysis of selected exact results

iv.    Inference: interval estimation and analysis of selected exact results

 

·         Introduction to asymptotic theory

i.        Random sequences, convergence in probability, almost sure convergence

ii.      Properties of convergent sequences, Laws of Large Numbers, and implications for estimation

iii.    Convergence in distribution, Slutsky’s Theorem, and the Cramér-Wold device

iv.    Central Limit Theorems, the Delta Method, and implications for estimation

 

·         Linear Projections and Regression

                    i.            Linear socio-economic relationships: some classical examples

                  ii.            Linear predictors, linear projections and conditional expectation

                iii.            The least squares estimator: derivation and algebraic properties

                iv.            Introduction to the linear regression model, dummy variables

 

Poslední úprava: Papariga Anna, Mgr. (15.09.2022)
Vstupní požadavky - angličtina

It is expected that students possess a solid command of univariate and multivariate calculus, as well as a basic training in linear algebra.

Poslední úprava: Papariga Anna, Mgr. (15.09.2022)
 
Univerzita Karlova | Informační systém UK