|
|
|
||
|
The course provides an introduction to modern philosophy of mathematics, focusing on several central texts in the field. It examines the three major schools that emerged at the beginning of the twentieth century (logicism, formalism, and intuitionism) together with traditional topics such as the existence of mathematical objects and the nature of mathematical truth. The course also explores alternative approaches to the foundations of mathematics. Poslední úprava: Punčochář Vít, Mgr., Ph.D. (30.01.2026)
|
|
||
|
active participation, presentation of a selected text, oral exam Poslední úprava: PUNCV4AF (03.02.2021)
|
|
||
|
A tentative reading plan: 25. 2.: Kant: Prolegomena to Any Future Metaphysics, The Main Transcendental Question. First Part: How is Pure Mathematics Possible? (pp. 32-45); Frege: Begriffsschrift (Preface) 4. 3.: Frege: Foundations of Arithmetic (Introduction + paragraphs 1-4); Frege: Function and Concept; 11. 3.: Frege: Foundations of Arithmetic, paragraphs 55-83 (pages 67-96) 18. 3.: Frege: Foundations of Arithmetic, paragraphs 45 (pp. 58-59), 53 (pp. 64-65), 84-109 (pp. 96-119) 25. 3.: Hilbert: On the Infinite; Curry: Remarks on the definition and nature of mathematics 1. 4.: Field: Realism and Anti-Realism about Mathematics 8. 4.: Heyting: Intuitionism. An Introduction: Disputation; Heyting: The Intuitionist Foundations of Mathematics 15. 4.: Kolmogorov: On the Interpretation of Intuitionistic Logic; Martin-Löf: On the Meanings of the Logical Constants and the Justifications of the Logical Laws 22. 4.: Benacerraf: Mathematical Truth 29. 4.: Benacerraf: What Numbers Could Not Be 13. 5.: Lakatos: Infinite Regress and Foundations of Mathematics Further recommended literature: Benacerraf, P. & Putnam, H. (eds.), 1983. Philosophy of Mathematics: Selected Readings, Cambridge University Press, 2nd edition. Shapiro, S. (2000). Thinking about Mathematics, Oxford.
Poslední úprava: Punčochář Vít, Mgr., Ph.D. (30.01.2026)
|
