SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Approximate and Numerical Methods 2 - NNUM002
Title: Přibližné a numerické metody 2
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Jaroslav Haslinger, DrSc.
Classification: Mathematics > Numerical Analysis
Incompatibility : NMNV405, NNUM015
Interchangeability : NMNV405, NNUM015
Is incompatible with: NNUM033, NNUM034, NMNV405, NNUM015
Is interchangeable with: NMNV405, NNUM015
Annotation -
Last update: T_KNM (18.05.2008)
Finite element method for the numerical solution of linear elliptic partial differential equations.
Aim of the course -
Last update: HASLING/MFF.CUNI.CZ (30.04.2008)

To get basic knowledge on finite element methods and their applications for numerical realization of elliptic equations.

Literature - Czech
Last update: T_KNM (18.05.2008)

Haslinger J.: Metoda konečných prvků pro řešení eliptických rovnic a nerovnic. Skripta MFF UK, SPN Praha, l98O.

Teaching methods -
Last update: T_KNM (18.05.2008)

Lectures and tutorials in a lecture hall.

Requirements to the exam -
Last update: T_KNM (18.05.2008)

Examination according to the syllabus.

Syllabus -
Last update: prof. RNDr. Jaroslav Haslinger, DrSc. (08.05.2006)

Abstract formulation of linear elliptic problems, Lax-Milgram theorem.

Ritz-Galerkin method for approximations of abstract eliptic problems.

A basic idea of finite element methods (FEM).

Theory of approximations in Sobolev spaces. Application to Lagrange and Hermite interpolations.

Convergence rate of approximate solutions, convergence rate in the L2-norm.

Numerical integration in FEM.

Entry requirements -
Last update: HASLING/MFF.CUNI.CZ (30.04.2008)

Basic knowledge of modern methods in PDE´s.

Charles University | Information system of Charles University |