PředmětyPředměty(verze: 970)
Předmět, akademický rok 2012/2013
   Přihlásit přes CAS
Matematika B2 - MS710P55
Anglický název: Mathematics B2
Zajišťuje: Ústav aplikací matematiky a výpočetní techniky (31-710)
Fakulta: Přírodovědecká fakulta
Platnost: od 2011 do 2012
Semestr: letní
E-Kredity: 4
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: 120
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Poznámka: povolen pro zápis po webu
Garant: RNDr. Václav Kotvalt, CSc.
Vyučující: RNDr. Václav Kotvalt, CSc.
RNDr. Alena Šmejkalová, CSc.
Neslučitelnost : MS710P02, MS710P03A, MS710P03B, MS710P52, MS710P53, MS710P56, MUMP001
Záměnnost : MS710P52
Je záměnnost pro: MS710P01
Ve slož. záměnnosti pro: MS710P56
Výsledky anket   Termíny zkoušek   Rozvrh   
Soubory Komentář Kdo přidal
stáhnout 1 - definiční obor, obor hodnot, limity.pdf příklady 1 RNDr. Alena Šmejkalová, CSc.
stáhnout 2 - derivace.pdf příklady 2 RNDr. Alena Šmejkalová, CSc.
stáhnout 3 - tečna ke grafu, monotonie, konvexita, konkávita.pdf příklady 3 RNDr. Alena Šmejkalová, CSc.
stáhnout 4 - extrémy, inflexní body.pdf příklady 4 RNDr. Alena Šmejkalová, CSc.
stáhnout 5 - asymptoty, průběh funkce.pdf příklady 5 RNDr. Alena Šmejkalová, CSc.
stáhnout 6 - neurčitý integrál, metody integrace.pdf příklady 6 RNDr. Alena Šmejkalová, CSc.
stáhnout 7 - určitý integrál.pdf příklady 7 RNDr. Alena Šmejkalová, CSc.
stáhnout 8 - aplikace určitého integrálu.pdf příklady 8 RNDr. Alena Šmejkalová, CSc.
stáhnout 9 - funkce dvou proměnných, tečná rovina, gradient, extrémy.pdf příklady 9 RNDr. Alena Šmejkalová, CSc.
Anotace -
Cílem je získat znalosti potřebné ke studiu dalších předmětů matematického základu (zpracování dat, statistika) i
odborných předmětů.

Diferenciální počet. Integrální počet. Základní typy diferenciálních rovnic.
Poslední úprava: Kuncová Kristýna, RNDr., Ph.D. (13.03.2020)
Literatura

Kotvalt, V.: Základy matematiky pro biologické obory. Skriptum UK Praha, 1997, 1999, 2001.

Hradilek L., Stehlík E.: Matematika pro geology I. SNTL, 1990, 426 str.

Hradilek L., Stehlík E.: Matematika pro geology I. SPN, 1985, 338 str.

Hradilek L., Stehlík E.: Matematika pro geology II. SPN, 1986, 329 str.

Poslední úprava: Šmejkalová Alena, RNDr., CSc. (16.03.2021)
Požadavky ke zkoušce

zkoušku je možné absolvovat jen se získaným zápočtem (zpravidla se uděluje za úspěšné splnění zápočtového testu)

zkouška písemná + ústní

k postupu k ústní zkoušce je třeba napsat písemku alespoň na 6 bodů z 12 možných

při neúspěšné ústní zkoušce se písemka píše znovu

u druhého opravného termínu proběhne ústní zkouška vždy

Poslední úprava: Kuncová Kristýna, RNDr., Ph.D. (04.03.2018)
Sylabus -

Diferenciální počet. Funkce. Spojitost funkce v bodě, v intervalu; funkce spojité na uzavřeném intervalu. Limita funkce. Věty o spojitosti a o limitách.

Derivace: výpočetní vzorce a pravidla. Rovnice tečny, normály. Derivace vyšších řádů. Parciální derivace; rovnice tečné roviny k ploše z=f(x,y). Diferenciál, totální diferenciál. Zákon přenášení chyb. Lokální extrémy funkce jedné a dvou proměnných. Globální extrémy. Metoda nejmenších čtverců. Neurčité výrazy. Vyšetřování průběhu funkce, sestrojování grafu funkce.

Integrální počet. Primitivní funkce; neurčitý integrál. Integrování racionálních funkcí (jednodušší případy). Substituční metoda, integrování per partes. Určitý integrál, Newtonova definice, součtová definice. Numerická integrace. Nevlastní integrály.

Diferenciální rovnice 1. řádu: separace proměnných, lineární rovnice 1. řádu.

Poslední úprava: Šmejkalová Alena, RNDr., CSc. (16.03.2021)
 
Univerzita Karlova | Informační systém UK