PředmětyPředměty(verze: 970)
Předmět, akademický rok 2014/2015
   Přihlásit přes CAS
Matematické modelování v mechanice podzemní vody - MG451P15
Anglický název: Mathematical modeling in groundwater mechanics
Český název: Matematické modelování v mechanice podzemní vody
Zajišťuje: Ústav hydrogeologie, inženýrské geologie a užité geofyziky (31-450)
Fakulta: Přírodovědecká fakulta
Platnost: od 2014 do 2019
Semestr: zimní
E-Kredity: 3
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/0, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Poznámka: povolen pro zápis po webu
Garant: doc. RNDr. Jiří Mls, CSc.
Vyučující: doc. RNDr. Jiří Mls, CSc.
Korekvizity : MG451P02
Výsledky anket   Termíny zkoušek   Rozvrh   
Anotace -
Konceptuální model a matematický model v proudění podzmeních vod a transportu látek, deterministický a stochastický přístup, numerická řešení, metody konečných diferencí a konečných prvků, úvodní a hraniční podmínky, odhady parametrů, kalibrace a výsledky modelových řešení, úvod do některých konkrétních programů, inversní modely.
Poslední úprava: DATEL (06.10.2003)
Literatura

Kitanidis, P. K., 1997, Introduction to Geostatistics, Cambridge University Press, Cambridge

Ralston, A., 1973, Základy numerické matematiky, Academia, Praha

Vitásek, E., 1994, Základy teorie numerických metod pro řešení diferenciálních rovnic, Academia, Praha

Poslední úprava: Sedláčková Zdeňka, Mgr. (31.10.2011)
Sylabus

Diferenciální rovnice a jejich využití v problémech přírodních věd, formulace úloh, numerický proces a analytické řešení, obyčejné diferenciální rovnice typu y' = f(x,y)a jejich soustavy, věty o existenci a jednoznačnosti řešení.

Podstata numerických řešení, chyba metody, zaokrouhlovací chyba, lokální chyba, konvergence numerického procesu, konsistence, stabilita.

Jednokrokové metody, metody Runge-Kutta, jejich podstata a nejužívanější schemata, vícekrokové metody, metody prediktor-korektor, nejužívanější schemata, srovnání metod, hlavní výhody a nevýhody.

Numerická řešení soustav rovnic prvního řádu a obyčejných rovnic vyšších řádů, metoda přímek, řešení konkrétních problémů.

Aproximace funkcí, užití metody nejmenších čtverců a ortogonálních polynomů.

Datové soubory a základní statistiky, deterministické a stochastické pokusy, náhodné jevy, nezávislost náhodných jevů, pravděpodobnost, diskrétní a spojitá náhodná veličina, hustota pravděpodobnosti, distribuční funkce.

Řešení úloh.

Experimentální variogram, standardní modely, stacionární isotropní model, vlastní model, teoretický variogram.

Interpolace krigingem a aproximace funkce na základě existujícího variogramu, interval n% spolehlivosti odhadu.

Poslední úprava: Sedláčková Zdeňka, Mgr. (31.10.2011)
 
Univerzita Karlova | Informační systém UK