SubjectsSubjects(version: 945)
Course, academic year 2016/2017
   Login via CAS
Quantum Theory I - NFPL010
Title: Kvantová teorie I
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015 to 2016
Semester: winter
E-Credits: 9
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Jan Klíma, CSc.
Classification: Physics > Solid State Physics
Incompatibility : NBCM110, NJSF060, NJSF094, NOFY042, NOFY045, NTMF066
Is incompatible with: NBCM110, NTMF066, NJSF094, NOFY042, NOFY045
Is pre-requisite for: NHIF025, NBCM003, NBCM042, NOOE119
Is interchangeable with: NOFY042
Files Comments Added by
download mimoradny_termin.pdf Ing. Richard Korytár, Ph.D.
download terminy_zapoctovek.pdf termíny zápočtových písemek Ing. Richard Korytár, Ph.D.
Annotation -
Last update: T_KFES (02.05.2013)
A comprehensive course on quantum theory suitable both for experimental and theoretical physicists. The basic knowledge at the level of introductory undergraduate course (like OFY044 at MFFUK) is assumed. Otherwise the course is self-contained, starting with postulates and mathematical prerequisites and going on from one-body motion in a central field to the electronic structure of atoms and molecules and their interaction with electromagnetic field. Also included are theory of elastic scattering and basic knowledge of Dirac theory.
Literature - Czech
Last update: Ing. Richard Korytár, Ph.D. (05.10.2017)
  • J. Klíma, B. Velický: Kvantová mechanika I, II, skriptum UK
  • A.S. Davydov: Kvantová mechanika, SPN 1978
  • J. Formánek: Úvod do kvantové teorie, Academia 1983
  • L. Landau, E.M. Lifšic: Kvantovaja mechanika, Moskva 1963
  • nebo libovolná jiná z mnoha učebnic kvantové mechaniky.

Syllabus -
Last update: T_KFES (02.05.2013)

I. Formal structure of QM. Postulates. Representations. Aharon-Bohm effect.

II. Angular momentum and spin. Spin resonance. Bells theorem and EPR paradox.

III. Approximate methods to solve stationary Schroedinger equation (SE). Variational principle. Hartree-Fock theory. Motion in constant electrical and magnetic fields.

IV. Scattering theory. Phase shifts. Resonance.

V. Approximate methods to solve time dependent SE. Sudden, harmonic and adiabatic change.

VI. Semiclassical theory of interaction with the electromagnetic radiation. Calibration invariance. Absorption, emission.

VII. Dirac equation. Free particle. Pauli equation. Second order corrections.

VIII. Born-Oppenheimer approximation. Basic theory of molecular structure.

Literature:

C. Cohen-Tannoudji, B. Diu, F. Laloë: Quantum Mechanics I,II, J. Wiley 1977

J.J.Sakurai: Modern Quantum Mechanics, Addison-Wesley 1994

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html