SubjectsSubjects(version: 944)
Course, academic year 2023/2024
   Login via CAS
Advanced Simulations in Many-particle Physics - NTMF024
Title: Pokročilé simulace ve fyzice mnoha částic
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Additional information:
Guarantor: doc. RNDr. Karel Houfek, Ph.D.
doc. RNDr. Milan Předota, Ph.D.
Classification: Physics > Theoretical and Math. Physics
Comes under: Doporučené přednášky 1/2
Co-requisite : NTMF021
Annotation -
Last update: doc. RNDr. Karel Houfek, Ph.D. (13.05.2022)
Advanced Monte Carlo and molecular dynamics methods, their application to critical, nonequilibrium and quantum systems: cluster algorithms for lattice models, transport coefficients, kinetic MC, quantum Monte Carlo, simulations from the first principles. Suitable for the 1st and 2nd year of master's studies and for doctoral students in the fields of theoretical physics and mathematical modeling.
Course completion requirements - Czech
Last update: doc. RNDr. Karel Houfek, Ph.D. (11.06.2019)

Ústní zkouška

Literature -
Last update: doc. RNDr. Karel Houfek, Ph.D. (14.05.2022)

I. Nezbeda, J. Kolafa, M. Kotrla, Úvod do počítačových simulací: Metody Monte Carlo a molekulární dynamiky, Karolinum 2003.

D. Landau a K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press 2002.

M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, 1999.

D. Frenkel, B. Smit, Understanding molecular simulation, Academic Press, San Diego, USA 2002.

M. Kotrla: Numerical simulations in the theory of crystal growth, Comp. Phys. Comm. 97, 82-100 (1996).

Requirements to the exam - Czech
Last update: doc. RNDr. Karel Houfek, Ph.D. (11.06.2019)

Zkouška je ústní, požadavky odpovídají sylabu, v detailech pak tomu, co bylo během semestru odpřednášeno.

Syllabus -
Last update: RNDr. Miroslav Kotrla, CSc. (19.05.2011)
Phase transitions and critical phenomena
Methods of inserting particles, Gibbs ensemble, phase equilibrium, critical temperature by scaling with a system size, critical slowing down, cluster algorithms for spin models.

Simulation of realistic systems
Long-range forces, Ewald summation, simulation of molecular systems, methods conserving bond length and angles, phase equilibrium.

Special algorithms and techniques
Random number generation, multispin coding for Ising model and cellular automata, multiscale simulations.

Non-equilibrium systems close to equilibrium
Calculation of kinetic coefficients, time correlation functions, Einstein relation, non-equilibrium MD, self-diffusion in lattice gas, equilibrium and con-equilibrium calculation of viscosity and dielectric constant.

Kinetic Monte Carlo
Choice of kinetics and rates, time in kinetic MC, "n-fold way" algorithm, model of adsorption and desorption.

Simulation of growth processes
Simulation of simple growth models (Eden, Edwars-Wilkinson model etc.), kinetic roughening, Laplacian growth, diffusion limited aggregation (DLA), solid-on-solid models, realistic simulations of crystal growth.

Optimalization problems
Traveling salesman problem, simulated annealing, calculation of diffusion in lattice gas, calculation of energy barriers by molecular statics, finding the minimal energy path in a system on N particles, method "elastic nudged band".

Quantum simulations
Variational quantum MC, canonical quantum MC, isomorphism of quantum and classical systems, sign problem, first principle calculations, method of density functional.

Charles University | Information system of Charles University |