SubjectsSubjects(version: 916)
Course, academic year 2022/2023
   Login via CAS
Introduction to Complex Analysis (O) - NMMA901
Title: Úvod do komplexní analýzy (O)
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Is provided by: NMMA301
Guarantor: doc. RNDr. Roman Lávička, Ph.D.
Class: Informatika Mgr. - Diskrétní modely a algoritmy
Classification: Mathematics > Real and Complex Analysis
Incompatibility : NMAA021, NMAA121, NMMA301
Interchangeability : NMAA121, NMMA301
Is interchangeable with: NMAA121
Annotation -
Last update: G_M (16.05.2012)
An introductory course in complex analysis. Not equivalent to the required course NMMA301.
Aim of the course -
Last update: G_M (27.04.2012)

Introduction to complex analysis.

Course completion requirements -
Last update: doc. RNDr. Roman Lávička, Ph.D. (26.05.2019)

A student must obtain credit from the exercises to take the exam. The credit is obtained for active participation at the exercises.

Literature - Czech
Last update: G_M (27.04.2012)
Základní literatura

Veselý, J.: Komplexní analýza, Karolinum Praha, 2000

Novák, B.: Analýza v komplexním oboru (skripta), SPN Praha, 1980

Kopáček, J.: Příklady z matematiky pro fyziky IV, skripta MFF.

Doplňková literatura.

Rudin, W.: Reálná a komplexní analýza, Academia Praha, 1977

Teaching methods -
Last update: G_M (27.04.2012)

Lecture and exercises

Requirements to the exam -
Last update: doc. RNDr. Roman Lávička, Ph.D. (26.05.2019)

Requirements to the exam correspond to the syllabus to the extent to which topics were covered during lectures and tutorials.

Syllabus -
Last update: prof. RNDr. Ondřej Kalenda, Ph.D., DSc. (18.08.2017)

Holomorphic functions.

Power series and elementary functions.

Path integral.

The local Cauchy theorem and its applications.

Isolated singularities.

The Laurent series, residues.

The global Cauchy theorem and Cauchy formula.

Charles University | Information system of Charles University |