|
|
|
||
The third part of a four-semester course in calculus for bachelor's program Financial Mathematics.
Last update: Kaplický Petr, doc. Mgr., Ph.D. (30.05.2019)
|
|
||
CONDITIONS FOR SEMESTER 2024/25
The credit from exercises is required to participate at the exam. Condition for obtaining credit for excercises: two successfully written exams during the semester. In case student is not successfull in the written exams, it is possible to obtain credit also for additional homeworks. In this case the student must contact the teacher.
Some more details may be found in the section "Requirements to the exam". For more information check the homepage below: https://www.karlin.mff.cuni.cz/~cuth/Kalkulus2_pozadavky.pdf Last update: Cúth Marek, doc. Mgr., Ph.D. (13.09.2024)
|
|
||
O. Hájková, M. Johanis, O. John, O. Kalenda, M. Zelený: Matematika J. Lukeš, J. Malý: Míra a integrál (Measure and integral) P. Holický, O. Kalenda: Metody řešení vybraných úloh z matematické analýzy pro 2. - 4. semestr J. Lukeš: Příklady k teorii Lebesgueova integrálu V. Jarník: Diferenciální počet I, II
Next resources
http://matematika.cuni.cz/pyrih-kalkulus.html Last update: Pyrih Pavel, doc. RNDr., CSc. (14.09.2021)
|
|
||
see
http://www.karlin.mff.cuni.cz/~cuth/index.html Last update: Cúth Marek, doc. Mgr., Ph.D. (30.09.2024)
|
|
||
Ability to solve problem similar to those solved at the exercises, knowledge of the theory presented in the lecture, understanding. Details at the web page of the lecturer: https://www.karlin.mff.cuni.cz/~cuth/Kalkulus2_pozadavky.pdf Last update: Cúth Marek, doc. Mgr., Ph.D. (13.09.2024)
|
|
||
Functions of several variables II (implicit function theorem, free and bounded extrema).
Sequences and series of functions (uniform convergence of series of functions, power series).
Introduction to measure theory (measurable representations, abstract Lebesgue integral, Lebesgue measure on R ^ n).
Multidimensional integral (Fubini's theorem, Substitution theorem, contents of shapes and volumes of bodies).
Swap integral order and limits, integral and series, or integral and derivative.
Gamma function and Beta function.
Lebesgue-Stieltjes integral. Last update: Pyrih Pavel, doc. RNDr., CSc. (14.09.2021)
|
|
||
To understand the material, it is suitable if the student has already completed the course Calculus 1. Last update: Pyrih Pavel, doc. RNDr., CSc. (14.09.2021)
|