SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Set Theory - NMIN160
Title: Teorie množin
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Guarantor: RNDr. David Chodounský, Ph.D.
Class: M Bc. FM
M Bc. FM > Doporučené volitelné
M Bc. FM > 1. ročník
M Bc. MMIB
M Bc. MMIB > Doporučené volitelné
M Bc. OM
M Bc. OM > Doporučené volitelné
M Bc. OM > 1. ročník
Classification: Mathematics > Discrete Mathematics
Is incompatible with: NAIL063
Is interchangeable with: NAIL063
Annotation -
An elective course for bachelor's program in Mathematics. Fundamentals of set theory.
Last update: G_M (16.05.2012)
Course completion requirements - Czech

Předmět bude zakončen ústní zkouškou v rozsahu podle sylabu předmětu.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (24.05.2019)
Literature - Czech

B. Balcar, P. Štěpánek, Teorie množin, Academia, Praha 2001.

K. Kunen, Set Theory: An Introduction to Independence Proofs, North Holland 1980.

Last update: Kaplický Petr, doc. Mgr., Ph.D. (06.06.2016)
Syllabus -

Set theory axioms. Basic operators on sets. Ordering. Countable and uncountable sets. Cardinality. Axiom of choice.

Last update: Kaplický Petr, doc. Mgr., Ph.D. (06.06.2016)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html