SubjectsSubjects(version: 875)
Course, academic year 2020/2021
  
Set Theory - NMIN160
Title: Teorie množin
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: not taught
Language: Czech
Teaching methods: full-time
Guarantor: RNDr. David Chodounský, Ph.D.
Class: M Bc. FM
M Bc. FM > Doporučené volitelné
M Bc. FM > 1. ročník
M Bc. MMIB
M Bc. MMIB > Doporučené volitelné
M Bc. OM
M Bc. OM > Doporučené volitelné
M Bc. OM > 1. ročník
Classification: Mathematics > Discrete Mathematics
N//Is incompatible with: NAIL063
Z//Is interchangeable with: NAIL063
Annotation -
Last update: G_M (16.05.2012)
An elective course for bachelor's program in Mathematics. Fundamentals of set theory.
Course completion requirements - Czech
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (24.05.2019)

Předmět bude zakončen ústní zkouškou v rozsahu podle sylabu předmětu.

Literature - Czech
Last update: doc. Mgr. Petr Kaplický, Ph.D. (06.06.2016)

B. Balcar, P. Štěpánek, Teorie množin, Academia, Praha 2001.

K. Kunen, Set Theory: An Introduction to Independence Proofs, North Holland 1980.

Syllabus -
Last update: doc. Mgr. Petr Kaplický, Ph.D. (06.06.2016)

Set theory axioms. Basic operators on sets. Ordering. Countable and uncountable sets. Cardinality. Axiom of choice.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html