|
|
|
||
A recommended course on group theory for specialization Mathematical Structures within General Mathematics.
Last update: G_M (15.05.2012)
|
|
||
Credit will be awarded for succesfully solving several homework sets (see web for details). Last update: Stanovský David, doc. RNDr., Ph.D. (21.09.2023)
|
|
||
primary: Joseph J. Rotman: An Introduction to the Theory of Groups, Springer, New York, 1995.
secondary: Aleš Drápal: Teorie grup : základní aspekty, Karolinum, Praha, 2000. Derek J.S. Robinson: A Course in the Theory of Groups, Springer, New York, 1982. M. Hall: The Theory of Groups, Macmillan Company, New York, 1959. I.Martin: Isaacs, Finite group theory, American Mathematical Society, Providence, 2008. L. Procházka, L. Bican, T. Kepka, P. Němec: Algebra, Academia, Praha, 1990. Last update: Stanovský David, doc. RNDr., Ph.D. (21.09.2023)
|
|
||
Students have to pass final written exam. The requirements for the exam correspond to what has been done during lectures and practicals. For details see the website. Last update: Stanovský David, doc. RNDr., Ph.D. (21.09.2023)
|
|
||
1. Basic structural features (subgroups, homomorphisms, products)
2. Group actions on a set, on itself.
4. The structure of finite groups (class equation, p-groups, Sylow theorems)
5. Subnormal series (Zassenhaus lemma, Jordan-Holder theorem, solvability, nilpotence)
6. Abelian groups - free abelian groups, finitely generated abelian groups
7. Free groups, Nielsen-Schreier theorem. Last update: Stanovský David, doc. RNDr., Ph.D. (21.09.2023)
|