SubjectsSubjects(version: 806)
Course, academic year 2017/2018
   Login via CAS
Mathematical Logic - NMAG331
Czech title: Matematická logika
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2017
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: prof. RNDr. Jan Krajíček, DrSc.
Class: M Bc. MMIB
M Bc. MMIB > Doporučené volitelné
M Bc. OM
M Bc. OM > Zaměření MA
M Bc. OM > Zaměření MSTR
M Bc. OM > Povinně volitelné
Classification: Informatics > Discrete Mathematics
Mathematics > Discrete Mathematics
Incompatibility : NLTM006
Interchangeability : NLTM006
In complex pre-requisite: NMAG349
Annotation -
Last update: Mgr. et Mgr. Jan Žemlička, Ph.D. (05.09.2013)

An advanced course in mathematical logic. It breifly recalls basic concepts and costructions. The main topic is the incompleteness and the undecidability, and Godel's theorems in particular. A recommended course for specializations Mathematical Analysis and Mathematical Structures within General Mathematics.
Aim of the course - Czech
Last update: Mgr. et Mgr. Jan Žemlička, Ph.D. (05.09.2013)

Cílem je vyložit matematickou analýzu problému logických základů matematiky.

Literature -
Last update: Mgr. et Mgr. Jan Žemlička, Ph.D. (05.09.2013)

J.R.Shoenfield: Mathematical logic; Addison-Wesley Publishing Company, London . Don Mills, Ontario, 1967.

Syllabus -
Last update: Mgr. et Mgr. Jan Žemlička, Ph.D. (05.09.2013)

A review of basics of first-order logic, including elements of model theory. Peano arithmetic PA, formalization of syntax in PA. Godel's theorems. Turing machines, the universal machine, the undecidability of the halting problem.

Charles University | Information system of Charles University |