Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
GENESIS: Genome-Encoded Networks Exploring Spatial Immune Signatures
Název práce v češtině: Role nádorového genomu v aktivaci a prostorovém uspořádání protinádorové imunity
Název v anglickém jazyce: GENESIS: Genome-Encoded Networks Exploring Spatial Immune Signatures
Klíčová slova: nádorové mikroprostředí, nádorové mutace, protinádorová imunita, imunoterapie
Klíčová slova anglicky: tumor microenvironment, tumor mutations, antitumor immunity, immunotherapy
Akademický rok vypsání: 2024/2025
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Ústav imunologie (13-722)
Vedoucí / školitel: prof. PharmDr. Jitka Palich Fučíková, Ph.D.
Řešitel:
Zásady pro vypracování
Hypothesis:
● Consider the entire genome rather than individual gene alterations, identify large genomic rearrangement-like signatures with the potential to resolve aneuploidy in the context of cancer evolution and for prediction of ICI associated signature.
● Generate a unique and access controlled publicly available data set accessible to the research community being in line with the FAIR principle
Seznam odborné literatury
Bibliography
1. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021 Feb 11;27(2):212–24.
2. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017 Nov;14(11):655–68.
3. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018 Sep 19;10(459).
4. Anagnostou V, Bardelli A, Chan TA, Turajlic S. The status of tumor mutational burden and immunotherapy. Nat Cancer. 2022 Jun;3(6):652–6.
5. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017 Dec;14(12):717–34.
6. Fridman WH, Meylan M, Petitprez F, Sun C-M, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol. 2022 Jul;19(7):441–57.
7. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, Luther SA, Speiser DE, Held W. Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity. 2019 Jan 15;50(1):195-211.e10.
8. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020 Dec;10(12):1808–25.
9. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023 Feb;22(2):127–44.
10. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995 Mar;14(1):3–15.
11. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, Rajkowska K, Gaweda-Walerych K, Ingallina E, Tonelli C, Morelli MJ, Amato A, Eterno V, Zambelli A, Rosato A, Amati B, Wiśniewski JR, Del Sal G. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016 Aug;18(8):897–909.
12. Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020 Aug 7;11(1):3945.
13. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2016 Jan;108(1).
14. Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 2011 Sep 15;71(18):5998–6009.
15. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017 Jan 20;355(6322).
16. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, Sie D, Lewsley L-A, Hanif A, Wilson C, Dowson S, Glasspool RM, Lockley M, Brockbank E, Montes A, Walther A, Sundar S, Edmondson R, Hall GD, Clamp A, Brenton JD. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018 Sep;50(9):1262–70.
Předběžná náplň práce
● Aim 1: Resolve the cancer genome not only at single nucleotide level but also on structural variants, genome assembly and epigenetics, alongside matched comprehensive immune composition profiling, to identify evidence indicating that each cancer genome inherits signatures associated with the cell and spatial composition of the TME.
● Aim 2: Apply read-to-use experimental models studying chromosomal rearrangements and structural variations occurring upon selective pressure caused by treatment, tumor localization and immune cells residing at the site of metastatic niche.
● Aim 3: Functionally verify and validate mechanisms reflecting the TME ranging from ‘cold’ to ‘excluded’ tumor development ultimately turning the tumor into a treatment susceptible like TME.
Předběžná náplň práce v anglickém jazyce
Research plan:
In brief, we will use a longitudinal HGSOC cohort to profile the cancer genome together with matched comprehensive immune profiling using high-accurate long-read WGS and sequential multi-color fluorescence imaging, respectively in the collaboration with University of Basel. Unsupervised analysis will be subsequently performed to identify clusters of matched cancer genome signatures with cellular and molecular immune compositions. In parallel, we develop and apply in vitro and in vivo models to dissect mechanisms of cellular and molecular immune escape induced by genomic aberrations beyond gene mutations. In vitro models consist of TP53 mutations, WGD, and subsequent aneuploidy. Apart from the model’s reproducibility which we consider highly relevant addressing the randomness of genomic cancer evolution, the best model will be subjected to prominent features placing cancer cells under selective pressure, always following up by studying the genomic architecture using sequencing technologies balancing costs, throughput, and output. An enrichment of specific genomic signatures (e.g. gain of chr16p in co-cultures with T cells) will be studied in more detail by applying WGS using SMASHseq to understand the consequences of specific genomic aberrations. In parallel, we will trace cancer genomic evolution in vivo using syngeneic ID8 mouse model together with known tertiary lymphoid structure development and sensitivity to ICIs. Finally, we will validate our findings in our conjoint cohorts with several data sets already available (e.g. bulk RNAseq, WESseq, quantified immunophenotypes, and proteomics) and further verify genomic signatures and process either with cryopreserved or viable matched biobanked samples (>600 HGSOC patients) for further in-depth characterisation.

 
Univerzita Karlova | Informační systém UK