Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Funkce systémové pravé komory po atriální korekci transpozice velkých tepen – longitudinální sledování a vliv na zátěžovou kapacitu
Název práce v češtině: Funkce systémové pravé komory po atriální korekci transpozice velkých tepen – longitudinální sledování a vliv na zátěžovou kapacitu
Název v anglickém jazyce: Function of systemic right ventricle after atrial correction of transposition of great arteries - longitudinal follow-up and impact on exercise capacity
Klíčová slova: Atriální korekce transpozice velkých tepen, ejekční frakce, maximální spotřeba kyslíku, systémová pravá komora, tepová rezerva, zátěžová kapacita
Klíčová slova anglicky: Atrial correction of transposition of great arteries, ejection fraction, maximal oxygen uptake, systenuc right ventricle, heart rate reserve, exercise capacity
Akademický rok vypsání: 2017/2018
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Klinika kardiovaskulární chirurgie (13-343)
Vedoucí / školitel: doc. MUDr. Vilém Rohn, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 07.10.2017
Datum zadání: 07.10.2017
Datum potvrzení stud. oddělením: 07.10.2017
Datum a čas obhajoby: 27.06.2022 10:00
Datum odevzdání elektronické podoby:13.12.2021
Datum odevzdání tištěné podoby:14.12.2021
Datum proběhlé obhajoby: 27.06.2022
Oponenti: doc. MUDr. Kateřina Linhartová, Ph.D.
  prof. MUDr. Radek Pudil, Ph.D.
 
 
Seznam odborné literatury
LITERATURA:
1. Popelová J. Vrozené srdeční vady v dospělosti. Grada Publishing. 2019.
2. Unolt M. et al. Transposition of Great Arteries: New Insights into the Pathogenesis. Frontiers in Pediatrics 2013;1:1-7.
3. Haeffele CH, Lui GK. Dextro-Transposition of the Great Arteries. Cardiology Clinics 2015;33:543-558.
4. Kirklin JW, Barrat-Boyes BG. Complete Transposition of the Great Arteries. In: Kirklin JW, Barrat-Boyes BG, eds. Cardiac Surgery, 2nd ed. New York: Chruchill Livingstone, 1993:1383-1467.
5. Hučín B. Dětská kardiochirurgie. Grada Publishing. 2001. Kapitola 9. Nekorigovaná d-transpozice velkých arterií.
6. Edwin F et al. Primary arterial switch operation for transposition of the great arteries with intact ventricular septum - is it safe after three weeks of age? Interact Cardiovasc Thorac Surg 2010;11:641-644.
7. Moons P et al. Long Term Outcome up to 30 Years after the Mustard or Senning Operation: a Nationwide Multicenter Study in Belgium. Heart 2004;90:307-311.
8. Raissadati A et al. Outcomes after the Mustard, Senning and Arterial Switch Operation for Treatment of Transposition of the Great Arteries in Finland: a nationwide 4-decade perspective. Eur J Cardiothorac Surg 2017;52:573–580.
9. Horer J et al. Improvement in Long-term Survival after Hospital Discharge but not in Freedom from Reoperation after the Chase from Atrial to Arterial Switch for Transposition of the Great Arteries. J Thorac Cardiovasc Surg 2009;137:347-354.
10. Gorler H et al. Long-term Morbidity and Quality of Life after Surgical Repair of Transposition of the Great Arteries: Atrial versus Arterial Switch Operation. Interactive CardioVascular and Thoracic Surgery 2011;12:569-574.
11. Venkatesh P et al. Predictors of Late Mortality in D-Transposition for the Great Arteries After Atrial Switch Repair: Systematic Review and Meta-Analysis. J Am Heart Assoc 2019;8:e012932. Published online 2019 Oct 23.
12. Poterucha JT et al. Intravascular and Hybrid Intraoperative Stent Placement for Baffle Obstruction in Transposition of the Great Arteries after Atrial Switch. Catheter Cardiovas Interv 2017 (1);89(2):306-314.
13. Patel S et al. Atrial Baffle Problems Following the Mustard Operation in Children and Young Adults with Dextro-transposition of the Great Arteries: the Need for Improved Clinical Detection in the Current Era. Congenit Heart Dis 2011;6(5):466-474.
14. Mohsen AE et al. Stent implantation for superior vena cava occlusion after the Mustard operation. Catheter Cardiovasc Interv 2001;52:351-354.
15. De Paquale G et al. High Prevanlce of Baffle Leaks in Adults after Atrial Switch Operations for Transposition of the Great Arteries. Eur Heart Journal Cardiovascular Imaging 2017;18:531-535.
16. Beerman LB et al. Arrhythmias in transposition of the great arteries after the Mustard operation. J Am Coll Cardiol 1983;51:1530-1534.
17. Janousek J et al. Atrial baffle procedures for complete transposition of the great arteries: natural course of sinus node dysfunction and risk factors for dysrhythmias and sudden death. Z Kardiol 1994;83:933-938.
18. Agnetti A et al. Long-term Outcome after Senning Operation for Transposition of the Great Arteries. Clin Cardiol. 2004;27(11):611-614.
19. Gillette PC et al. Mechanisms of cardiac arrhytmias after the Mustard operation for Transposition of the Great Arteries. Am J Cardiol. 1980;45:1225-1230.
20. Rog B et al. Clinical evaluation of exercise capacity in adults with systemic right ventricle. Tex Heart Inst J 2019;46:14-20.
21. Vejlstrup K et al. Long-Term Outcome of Mustard/Senning Correction for Transposition of the Great Arteries in Sweden and Denmark. Circulation 2015;132:633-8.
22. Khairy P et al. Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter sudy. Circ Arrhythm Electrophysiol. 2008;1:250-257.
23. Samánek M et al. Prevalence, treatment and outcome of heart disease in live-born children: a prospective analysis of 91,823 live-born children. Pediatr Cardiol. 1989;10:205-211.
24. Kavey RE. Left ventricular hypertrophy in hypertensive children and adolescents: Predictors and prevalence. Curr Hypertens Rep, 2013;15(5): 453–57.
25. Gibb A., Hill BG. Metabolical coordination of physiological and pathological cardiac remodelling. Circ Res 2018;123:107-128.
26. Samak M et al. Cardiac Hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 2016;22: 75-79.
27. Singh TP et al. Myocardial flow reserve in patients with a systemic right ventricle after atrial switch repair. J Am Coll Cardiol. 2001;37:2120-2125.
28. Millane T et al. Role of ischemia and infarction in late right ventricular dysfunction after atrial repair of transposition of the great arteries. J Am Coll Cardiol 2000;35:1661–1668.
29. Hauser M et al. Myocardial Blood Flow in Patients With Transposition of the Great Arteries – Risk Factor for Dysfunction of the Morphologic Systemic Right Ventricle Late After Atrial Repair. Circulation 2015;79:425–431.
30. Li W et al. Relation of Biventricular Function Quantified by Stress Echocardiography to Cardiopulmonary Exercise Capacity in Adults With Mustard (Atrial Switch) Procedure for Transposition of the Great Arteries. Circulation. 2004;110:1380-1386.
31. Babu-Naranyan SV et al. Late gadolinium enhacement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111:2019-2098.
32. Rydman R et al. Systemic right ventricular fibrosis detected by cardiovascular magentic resonance is associated with clinical outcome, mainly new-onset atrial arrhytmia in patients after atrial redirection surgery for transposition of the great arteries. Circ Cardiovasc Imaging. 2015;8:1220-1223.
33. Broberg CS et al. Myocardial fibrosis and its relation to adverse outcome in transposition of great arteries with a systemic right ventricle. Int J Cardiol 2018;271:60-65.
34. Ladouceur M et al. Impaired atrioventricular transport in patients with transposition of the great arteries palliated by atrial switch and preserved systolic right ventricular function: A magentic resonance imaging study. Congenit Heart dis. 2017;12:458-466.
35. Reich O et al. Long-term ventricular performance after intra-atrial correction of transposition: left ventricular filling is the major limitation. Heart 1997;78:376-381.
36. Samyn MM et al. Echocardiography vs cardiac magnetic resonance imaging assessment of the systemic right ventricle for patients with d-transposition of the great arteries status post atrial switch. Congenit Heart Dis. 2019;14:1138-1148.
37. Schneider M at al. Systematic Evaluation of Systemic Right Ventricular Function. J Clin Med. 2019;9:107
38. Jimenez-Juan L et al. Assessment of Right Ventricular Volume and Function Using Cardiovascular Magentic Resonance Cine Imaging after Atrial Redirection Surgery for Complete Transposition of the Great Arteries. Int J Cardiovas Imaging. 2013;29:335-342.
39. Samarai D et al. Global longitudinal strain correlates to systemic right ventricular function. Cardiovasc Ultrasound 2020;18:4-5.
40. Plymen C et al. Systemic Right Ventricular Function late after Atrial Switch Redirection Surgery for Transposition of the Great Arteries Relates to NT-pro Brain Natriuretic Peptide and Electrocardiographic Parameters, Abstract 1977. Circulation 2009;120:S581.
41. LaRocca G et al. MRI Predictors of Exercise Capacity in Adult Patients after Atrial Correction for Transposition of the Great Arteries, Abstract 3419. Circulation 2006;114:II_727-II_728.
42. Lorenz CH H et al. Right Ventricular Performance and Mass by Use of Cine MRI Late After Atrial Repair of Transpositon of the Great Arteries. Circulation 1995;92:233-239.
43. Bredy Ch. et al. New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J Qual Care Clin Outcomes. 2018;4:51-58.
44. Das BB et al. Relation Between New York Heart Association Functional Class and Objective Measures of Cardiopulmonary Exercise in Adults With Congenital Heart Disease. Am J Cardiol 2019;123:1868-1873.
45. Miyamoto K et al. Prognostic value of multiple biomarkers for cardiovascular mortality in adult congenital heart disease: comparisons of single-/two-ventricle physiology, and systemic morphologically right/left ventricles. Heart Vessels 2016;31:1834-1847.
46. Trojnarska O et al. Evaluation of exercise capacity with cardiopulmonary exercise test and B-type natriuretic peptide in adults with congenital heart diasease. Cardiol J. 2009;16:133-141.
47. Martinez-Quintana E et al. Right ventricular function and N-terminal pro-brain natriuretic peptide levels in adult patients with simple dextro-transposition of the great arteries. Echocardiography 2017;34:876-880.
48. Kotaska K et al. NT-proBNP levels and their relationship with systemic ventricular impairment in adult patients with transposition of the great arteries long after Mustard or Senning procedure. Clin Chem Lab Med 2015;53:1291-1296.
49. Popelova Rubackova J et al. NT-proBNP predicts mortality in adults with transposition of the great arteries late after Mustard or Senning correction. Congenit Heart Dis 2017;12:448-457.
50. Khatab K et al. Echocardiogram versus cardiac magnetic resonance imaging for assessing systolic function of subaortic right ventricle in adults with complete transposition of great arteries and previous atrial switch operation. Am J Cardiol 2013;111:908-913.
51. Grewal J et al. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2010;23:127-133.
52. Lembcke A et al. Multislice computed tomography for preoperative evaluation of right ventricular volumes and function: comparison with magnetic resonance imaging. Ann Thorac Surg 2005;79:1344-1351.
53. 2020 Adult Congenital Heart Disease (previously Grown-Up Congenital Heart Disease) (Management of) Guidelines, ESC practice guidelines doi:10.1093/eurheartj/ehaa554
54. Guazzi M et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2012;33:2917-2927.
55. Wasserman K. Principles of Exercise Testing and Interpretation. 3rd ed, Baltimore: Lippincott Williams and Wilkins;1999.
56. Diller GP et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 2005;112:828-835.
57. Hager A, Hess J. Comparison of health related quality of life with cardiopulmonary exercise testing in adolescents and adults with congenital heart disease. Heart 2005;91:517-520.
58. Inart X et al. Heart rate response during exercise predicts exercise tolerance in adults with transpostion of the great arteries and atrial switch operation. Int J Cardiol 2000 15;299:116-122.
59. Helsen F et al. Right ventricular systolic dysfunction at rest is not related to decreased exercise capacity in patients with a systemic right ventricle Int J Cardiol 2018;260:66-71.
60. Winter MM et al. Mechanisms for cardiac output augmentation in patients with a systemic right ventricle. Int J Cardiol. 2010;143:141-146.
61. Plymen C et al. Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2013;14:963-968.
62. Kempny A et al. Reference Values for Exercise Limitations among Adults with Congenital Heart Disease. Relation to Activities of Daily Life-Single Centre Experience and Review of Published Data. Eur Heart J. 2012;33:1386-1396.
63. Derrick P et al. Failure of stroke volume augmentation during exercise and dobutamine stress is unrelated to load-independent indexes of right ventricular performance after the Mustard operation. Circulation 2000;102:154-159.
64. Tulevski II et al. Dobutamine-induced increase of right ventricular contractility without increased stroke volume in adolescent patients with transposition of the great arteries, evaluation with magnetic resonance imaging. Int J Card Imaging 2000;16:471-478.
65. Angaran P, et al. Association of Left Ventricular Ejection Fraction with Mortality and Hospitalizations. J Am Soc Echocardiogr. 2020;33:802-810.
66. Harber MP et al. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advanced Since 2009. Prog Cardiovasc Dis 2017;60:11-20.
67. Overgaard D et al. Explanatory value of the Ability Index as assessed by cardiologist and patients with congenital heart disease. Congen Heart Dis 2021;7:559-564.
68. Bobik L et al. Preoperative NT-proBNP values in patients with atrioventricular septal defect and its role as a predictor or early postoperative course. Bratislava Medical Journal 2015;116:648-653.
69. Gavotto A et al. Factors associated with exercise capacity in patients with a systemic right ventricle. Int J Cardiol 2019;292:230-236.
70. Buys R et al. In adults with atrial switch operation for transposition of the great arteries low physical activity relates to reduced exercise capacity and decreased perceived physical functioning. Acta Cardiol 2012;67:49-57.
71. Schneider M et al. Systematic Evaluation of Systemic Right Ventricular Function. Clin Med 2019;9:107-118.
72. Fratz S at al. Patients after atrial switch operation for transposition of the great arteries cannot increase stroke volume under dobutamine stress as opposed to patients with congenitally corrected transposition. Circulation 2008;72:1130-1135.
73. Eicken A et al. Reduced Reserve to stress after atrial baffle repair for transposition of the Great Arteries is explained by limited ventricular preload. Abstract 118. Circulation 2007;116:II 462.
74. Inuzuka R et al. Comprehensive use of Cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012;125:250-259.
75. Dodge-Khatami A et al. In the footsteps of Senning. Lessons learned from atrial repair of transposition of the great arteries. Ann Thorac Surg 2005;79:1433-1444.
76. Kiener A et al. Long-term survival after arterial versus atrial switch in d-transposition of the great arteries. Ann Thorac Surg 2018;106:1827-1833.
77. Dos I et al. Late outcome of Senning and Mustard procedures for correction of transposition of the great arteries. Heart 2005;90:652-656.
78. Sarkar D et al. Comparison of long-term outcomes of atrial repair of simple transposition with implications for a later arterial switch strategy. Circulation 1999;100:176-181.
79. Schidlow DN et al. Transposition of the great arteries in the developing Word. Surgery and outcomes. J Am Coll Cardiol 2017;69:43-51.
80. Curzon CL et al. Cardiac surgery in infant with low birth weight is associated with increased mortality: analysis of the Society of Thoracic Surgeons Congenital Heart Database. J Thorac Cardiovasc Surg 2008;135:546-551.
81. Warnes CA. Transposition of the great arteries. Circulation 2006;114:2699-2709.
82. Yacoub M et al. Surgery for TGA in Developing Countries: The end of the beginning. J Am Coll Cardiol 2017;69:52-55.
Předběžná náplň práce
Maximální spotřeba kyslíku jako hlavní ukazatel zátěžové kapacity je u pacientů po atriální korekci TGA vodítkem při rozhodování o graviditě, terapeutických postupech, načasování operačních výkonů a transplantace srdce. Důsledkem atriální korekce transpozice velkých tepen je umístění pravé komory srdeční do systémové pozice. Cílem naší práce bylo zjistit, zdali ukazatele systolické funkce systémové pravé komory determinují maximální spotřebu kyslíku. V kohortě 86 pacientů po Sennigově korekci jsme stanovili třídu NYHA, hladinu NT-proBNP, provedli Holterovské a zátěžové vyšetření. Systolickou funkci pravé komory jsme hodnotili semikvantitativně echokardiograficky a kvantitatvitně prostřednictvím MR srdce. Maximální spotřeba kyslíku při zátěžovém vyšetření nekorelovala se třídou NYHA, hodnotou NT-proBNP ani ejekční frakcí systémové pravé a subpulmonální levé komory, pouze s tepovou rezervou při zátěži. Je pravděpodobné, že systolická funkce systémové pravé komory je pouze jednou ze složek mnohem složitějšího hemodynamického mechanismu, který se podílí na celkovém srdečním výdeji a jeho navýšení při zátěži.
Dalším cílem naší práce bylo zjistit dlouhodobou mortalitu všech pacientů po atriální korekci TGA a stanovit její perioperační determinanty. Zpracovali jsme perioperační údaje všech 448 nemocných operovaných touto metodou, zjistili jsme jejich dlouhodobou mortalitu a počet transplantací srdce. Dlouhodobé přežití bylo ovlivněno komplexitou vady, počtem výkonů při korekci, použitím Mustardovy techniky a bezprostředním výskytem trikuspidální regurgitace po operaci.
Předběžná náplň práce v anglickém jazyce
Maximal oxygen uptake during cardiopulmonary exercise test determines decision about pregnancy, therapeutic measures and timing of surgery and heart transplantation. Atrial correction of transposition of great arteries places right ventricle in the systemic positon. The aim of our work was to assess relation of parameters of function of systemic right ventricle to maximal oxygen uptake. 86 patients after Senning correction were subjected to testing of NYHA class, blood tests of NT-proBNP, Holter monitoring and cardiopulmonary exercise test. Systolic function of right ventricle was assessed semiquantitatively by echocardiography and precisely calculated by heart MRI. Maximal oxygen uptake was not associated with NYHA, NT-proBNP nor systolic function of systemic right and subpulmonary left ventricles. The only parameter associated with VO2max was heart rate reserve. Systolic function of the systemic right ventricle is likely only one integral part of a more complex haemodynamic mechanism of total heart output and its increase during exercise.
In the second part of our study we aimed to ascertain long term mortality of all patients after atrial correction of TGA and its perioperative determinants. We processed perioperative data of all 448 patients and determined long term mortality and transplantation data. Long term mortality was associated with complexity of congenital heart disease and corrective operation, Mustard technique and immediate presence of tricuspid regurgitation after primary operation.
 
Univerzita Karlova | Informační systém UK