Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Stanovení genetické příčiny malého vzrůstu jako cesta k pochopení patofyziologických mechanismů ovlivňujících růst člověka
Název práce v češtině: Stanovení genetické příčiny malého vzrůstu jako cesta k pochopení patofyziologických mechanismů ovlivňujících růst člověka
Název v anglickém jazyce: Determining the genetic cause of short stature as a way to understand the pathophysiological mechanisms affecting human growth
Klíčová slova: Familiárně malý vzrůst, léčba růstovým hormonem, malý vzrůst, poruchy růstové ploténky, porucha růstu, růstová ploténka, sekvenování nové generace
Klíčová slova anglicky: Familial short stature, growth disorders, growth hormone treatment, growth plate, growth plate disorders, next-generation sequencing, short stature
Akademický rok vypsání: 2016/2017
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Pediatrická klinika (13-350)
Vedoucí / školitel: doc. MUDr. Štěpánka Průhová, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 28.10.2016
Datum zadání: 28.10.2016
Datum potvrzení stud. oddělením: 28.10.2016
Datum a čas obhajoby: 23.09.2021 10:00
Datum odevzdání elektronické podoby:23.04.2021
Datum odevzdání tištěné podoby:24.04.2021
Datum proběhlé obhajoby: 23.09.2021
Oponenti: doc. MUDr. Jiřina Zapletalová, Ph.D.
  doc. MUDr. Renata Pomahačová, Ph.D.
 
 
Seznam odborné literatury
1. ACKE, F.R., et al., 2014. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Molecular Genetics and Metabolism. 113(3), pp. 230–235.
2. AL-JURAYYAN N, N.A, et al., 2012. Short stature in children: Pattern and frequency in a pediatric clinic, Riyadh, Saudi Arabia. Sudanese journal of paediatrics. 12(1), pp. 79-83.
3. AMANO, N., et al., 2014. Identification and functional characterization of two novel NPR2 mutations in Japanese patients with short stature. Journal of Clinical Endocrinology and Metabolism. 99(4), pp. 713-718.
4. ANDRADE, A.C., JEE Y.H. a NILSSON O., 2017. New genetic diagnoses of short stature provide insights into local regulation of childhood Growth. Hormone Research in Paediatrics. 88(1), pp. 22-37.
5. BAKKER, N.E., et al., 2013. Eight years of growth hormone treatment in children with Prader-Willi syndrome: Maintaining the positive effects. Journal of Clinical Endocrinology and Metabolism. 98(10), pp. 4013-4022.
6. BARAT-HOUARI, M., et al., 2016. Mutation Update for COL2A1 Gene Variants Associated with Type II Collagenopathies. Human Mutation. 37(1), pp. 7-15.
7. BARON, J., et al., 2015. Short and tall stature: A new paradigm emerges. National Reviews Endocrinology. 11(12), pp. 735-746.
8. BARSTOW, C. a RERUCHA, C., 2015. Evaluation of short and tall stature in children. American Family Physician. 92(1), pp. 43-50.
9. BEGEMANN, M., et al., 2015. Paternally inherited IGF2 mutation and growth restriction. New England Journal of Medicine. 373(4), pp. 345-356.
10. BEHJATI, S. a TARPEY, P.S., 2013. What is next generation sequencing? Archives of Disease in Childhood: Education and Practice Edition. 98(6), pp. 236-238.
11. BENABBAD, I., et al., 2017. Safety Outcomes and Near-Adult Height Gain of Growth Hormone-Treated Children with SHOX Deficiency: Data from an Observational Study and a Clinical Trial. Hormone Research in Paediatrics. 87(1), pp. 42-50.
12. BINDER, G., 2011. Short stature due to SHOX deficiency: Genotype, phenotype, and therapy. Hormone Research in Paediatrics. 75(2), pp. 81-89.
13. BLUM, W.F., et al., 2007. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: Two-year results of a randomized, controlled, multicenter trial. Journal of Clinical Endocrinology and Metabolism. 87(1), pp 42-50.
14. BLUM, W.F., et al., 2013. GH treatment to final height produces similar height gains in patients with SHOX deficiency and turner syndrome: Results of a multicenter trial. Journal of Clinical Endocrinology and Metabolism. 98(8), pp. 1383-1392.
15. BONAFE, L., et al., 2015. Nosology and classification of genetic skeletal disorders: 2015 revision. American Journal of Medical Genetics. 167(12), pp. 2869-2892.
16. BONNEMANN, C. G., et al., 2000. A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proceedings of the National Academy of Sciences. 97(3), pp. 1212-1217.
17. BRIGGS, M.D a WRIGHT, M.J., 2004. Pseudoachondroplasia. Gene Reviews [online]. Dostupné z: http://www.ncbi.nlm.nih.gov/pubmed/20301660 [updated 2018 Aug 16].
18. BRIGGS, M.D, WRIGHT, M.J. a MORTIER, G.R., 1993. Multiple Epiphyseal Dysplasia, Autosomal Dominant. GeneReviews [online]. Dostupné z: https://pubmed.ncbi.nlm.nih.gov/20301302/ [updated 2019 Apr 25]
19. CHAN, Y., et al., 2011. Common variants show predicted polygenic effects on height in the tails of the distribution, except in extremely short individuals. PLoS Genetics. 7(12), e1002439.
20. CHANOINE, J.P., DE WAELE, K. a WALIA, P., 2009. Ghrelin and the growth hormone secretagogue receptor in growth and development. International Journal of Obesity. 33(S1), S48-S52.
21. CHOI, W.B., et al., 2015. A Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of SHOX gene. Annals of Pediatric Endocrinology & Metabolism. 20(3), pp. 162-165.
22. CIANFEROTTI, L. a BRANDI, M.L., 2018. Pseudohypoparathyroidism. Minerva Endocrinology. 2018. 43(2), pp. 156-167.
23. CIMINO, P.J., a GUTMANN, D.H. 2018. Neurofibromatosis type 1. Handbook of Clinical Neurology. 148, pp. 799-811.
24. CLAYTON, P.E., et al., 2007. Consensus statement: Management of the child born small for gestational age through to adulthood: A consensus statement of the international societies of pediatric endocrinology and the growth hormone research society. Journal of Clinical Endocrinology and Metabolism. 92(3), pp. 804-810.
25. CORREA, F.A., et al., 2019. Combined pituitary hormone deficiency caused by PROP1 mutations: Update 20 years post-discovery. Archives of Endocrinology and Metabolism. 63(2), pp. 167-174.
26. COX, L.A., 1996. Tanner-Whitehouse method of assessing skeletal maturity: Problems and common errors. Hormone Research in Paediatrics. 45(Suppl 2), pp. 53-55.


27. CZARNY-RATAJCZAK, M., et al., 2001. A Mutation in COL9A1 Causes Multiple Epiphyseal Dysplasia: Further Evidence for Locus Heterogeneity. The American Journal of Human Genetics. 69(5), pp. 969-980.
28. DAUBER, A., et al., 2016. Mutations in pregnancy‐associated plasma protein A2 cause short stature due to low IGF‐I availability . EMBO Molecular Medicine. 8(4), pp. 363-374.
29. DAUBER, A., ROSENFELD, R.G., a HIRSCHHORN, J.N., 2014. Genetic Evaluation of Short Stature. The Journal of Clinical Endocrinology and Metabolism. 99(9), pp. 3080-3092.
30. DAVENPORT, M.L., et al., 2007. Growth hormone treatment of early growth failure in toddlers with Turner syndrome: A randomized, controlled, multicenter trial. Journal of Clinical Endocrinology and Metabolism. 92(9), pp. 3406-3416.
31. DENG, H., HUANG, X. a YUAN, L., 2016. Molecular genetics of the COL2A1-related disorders. Reviews in Mutations Research. 768, pp. 1-13.
32. DEODATI, A. a CIANFARANI, S., 2017. The Rationale for Growth Hormone Therapy in Children with Short Stature. Journal of Clinical Research in Pediatric Endocrinology. 9(S2), pp. 23-32.
33. EKVALL, S., et al., 2015. Mutation in NRAS in familial Noonan syndrome--Case report and review of the literature. BMC Medical Genetics. 16 (95), pp. 95-103.
34. FALLIS, A.G, 2013. Cartilage. Junqueira’s Basic Histology. 12. vydání, pp. 114-121.
35. FREDRIKS, A.M., et al., 2005. Nationwide age references for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. Archives of Disease in Childhood. 90(8), pp. 807-812.
36. FREIRE, B.L., et al., 2019. Multigene sequencing analysis of children born small for gestational age with isolated short stature. The Journal of Clinical Endocrinology and Metabolism. 104(6), pp. 2023-2030
37. GHIGO, E., et al., 1996. Reliability of provocative tests to assess growth hormone secretory status. Study in 472 normally growing children. Journal of Clinical Endocrinology and Metabolism. 81(9), pp. 3323-3327.
38. GIBSON, B.G. a BRIGGS, M.D. 2016. The aggrecanopathies; An evolving phenotypic spectrum of human genetic skeletal diseases. Orphanet Journal of Rare Diseases. 11(1), pp. 86-94.
39. GICQUEL, C. a LE BOUC, Y., 2006. Hormonal regulation of fetal growth. Hormone Research in Paediatrics. 65(S3), pp. 28-33.
40. GKOUROGIANNI, A., et al., 2016. Clinical characterization of patients with autosomal dominant short stature due to aggrecan mutations. The Journal of Clinical Endocrinology and Metabolism. 102(2), pp. 460-469.

41. GRANDONE, A., et al., 2014. Clinical features of a new acid-labile subunit (IGFALS) heterozygous mutation: Anthropometric and biochemical characterization and response to growth hormone administration. Hormone Research in Paediatrics. 81(1), pp. 67-72.
42. HAUER, N.N., et al., 2018. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genetics in Medicine. 20(6), pp. 630-638.
43. HELLEMANS, J., et al, 2003. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. American Journal of Human Genetics. 72(4), pp. 1040-1046.
44. HISADO-OLIVA, A., et al., 2015. Heterozygous NPR2 mutations cause disproportionate short stature, similar to Léri-Weill dyschondrosteosis. Journal of Clinical Endocrinology and Metabolism. 100(8), pp. 1133-1142.
45. HISADO-OLIVA, A., et al., 2018. Mutations in C-natriuretic peptide (NPPC): A novel cause of autosomal dominant short stature. Genetics in Medicine. 20(1). pp. 91-97.
46. HOLMES, D.F. a KADLER, K.E., 2006. The 10+4 microfibril structure of thin cartilage fibrils. Proceedings of the National Academy of Sciences. 103(46), pp. 17249-17254.
47. HOMMA, T.K., et al., 2019. Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing. Journal of Pediatrics. 215, pp. 192-198.
48. HUANG, Z., et al., 2018. Genetic Evaluation of 114 Chinese Short Stature Children in the Next Generation Era: A Single Center Study. Cellular Physiology and Biochemistry. 49(1), pp. 295-305.
49. HWA, V., 2016. STAT5B deficiency: Impacts on human growth and immunity. Growth Hormone and IGF Research. 28, pp. 16-20.
50. IRFANULLAH, A.Z., et al., 2018. Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. International Journal of Biochemistry and Cell Biology. 102, pp. 76-86.
51. JACOB, M., et al., 2018. Heterozygous NPR2 Mutation in Two Family Members with Short Stature and Skeletal Dysplasia. Case Reports in Endocrinology [online]. 2018:7658496
52. KIM, Y.M., et al., 2017. High diagnostic yield of clinically unidentifiable syndromic growth disorders by targeted exome sequencing. Clinical Genetics. 92(6), pp. 594-605.
53. KOBZOVÁ, J., et al., 2004. The 6th nationwide anthropological survey of children and adolescents in the Czech Republic in 2001. Central European Journal of Public Health. 12(3), pp. 126-130.

54. KOMMUNEHOSPITAL, A., 2000. Consensus Guidelines for the Diagnosis and Treatment of Growth Hormone (GH) Deficiency in Childhood and Adolescence: Summary Statement of the GH Research Society. GH Research Society. The Journal of Clinical Endocrinology and Metabolism. 85(11), pp. 3990-3993.
55. KRAKOW, D. a RIMOIN, L.R., 2010. The skeletal dysplasias. Genetics in medicine : Official Journal of the American College of Medical Genetics. 12(6), pp. 327-341.
56. LANGO ALLEN H., et al., 2010. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 467(7317), pp. 832-838.
57. LARON, Z., 2015. Lessons from 50 years of study of Laron syndrome. Endocrine Practice. 21(12), pp. 1395-1402.
58. LEBL, J., et al., 2016. Poruchy tělesného růstu. Dětská endokrinologie a diabetologie. První vydání, pp. 67-133.
59. LEBL, J., et al., 2020. Syndrom Noonanové a další RASopatie: Etiologie, diagnostika a terapie. Československá pediatrie. 75(4), pp. 219-226.
60. LI, J. a DONG, S., 2016. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells International [online]. 2016:2470351.
61. LINGLART, A., et al., 2011. Growth hormone treatment before the age of 4 years prevents short stature in young girls with Turner syndrome. European Journal of Endocrinology. 164(6), pp. 891-897
62. LOCHE, S., et al., 2014. Growth hormone treatment in non-growth hormone-deficient children. Annals of Pediatric Endocrinology and Metabolism. 19(1), pp. 1-7.
63. MAJAVA, M., et al. A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. American Journal of Medical Genetics. 143A(3), pp 258-264.
64. MÄKITIE, O., et al., 2005. Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations - Findings in 10 patients. American Journal of Medical Genetics. 137A(3), pp. 241-248.
65. MARR, C., SEASMAN, A., a BISHOP, N., 2017. Managing the patient with osteogenesis imperfecta: A multidisciplinary approach. Journal of Multidisciplinary Healthcare. 10, pp. 145-155.
66. MASSART, F., et al., 2015. Height outcome of short children with hypochondroplasia after recombinant human growth hormone treatment: a meta-analysis. Pharmacogenomics. 16(17), pp. 1965-1973.
67. MIYAMOTO, Y., et al., 2007. A recurrent mutation in type II collagen gene causes Legg-Calvé-Perthes disease in a Japanese family. Human Genetics. 121(5), pp. 625-629.
68. MURRAY, P.G., DATTANI, M.T. a CLAYTON, P.E., 2016. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Archives of Disease in Childhood. 101(1), pp. 96-100.
69. ORNITZ, D.M. a LEGEAI-MALLET, L., 2017. Achondroplasia: Development, pathogenesis, and therapy. Developmental Dynamics. 246(4), pp. 291-309.
70. PEDICELLI, S., et al., 2009. Controversies in the definition and treatment of idiopathic short stature (ISS). Journal of Clinical Research in Pediatric Endocrinolgy. 1(3), pp. 105-115.
71. PFÄFFLE, R. a KLAMMT, J., 2011. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Practice and Research in Clinical Endocrinology and Metabolism. 25(1), pp. 43-60.
72. RAUEN, K.A., 2013. The RASopathies. Annual Review of Genomics and Human Genetics. 14, pp. 355-369.
73. RICARD-BLUM, S., 2011. The Collagen Family. Cold Spring Harbor Perspectives in Biology. 3(1), pp. 1-19.
74. RICHARDS, S., et al., 2015. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 17(5), pp. 405-424.
75. ROBERTS, A.E., et al., 2013. Noonan syndrome. The Lancet. 381(9863), pp. 333-342.
76. ROMANO, A.A., et al., 2009. Growth response, near-adult height, and patterns of growth and puberty in patients with Noonan syndrome treated with growth hormone. Journal of Clinical Endocrinology and Metabolism. 94(7), pp. 2338-2344.
77. ROSS, J.L., et al., 2011. Growth hormone plus childhood low-dose estrogen in Turner’s syndrome. New England Journal of Medicine. 364(13), pp. 1230-1242.
78. SHANKAR, R.K. a BACKELJAUW, P.F., 2018. Current best practice in the management of Turner syndrome. Therapeutic Advances in Endocrinology and Metabolism. 9(1), pp. 33-40.
79. SHEN, G., 2005. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthodontics & Craniofacial Research. 8(1), pp. 11-17.
80. SIRKO-OSADSA, D. A., et al., 1998. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the α2(XI) chain of type XI collagen. Journal of Pediatrics. 132(2), pp. 368-371.
81. STAGI, S., et al., 2016. Growth Hormone Axis in Skeletal Dysplasias. Restricted Growth - Clinical, Genetic and Molecular Aspects. 1, p. 12.

82. STEPHURE, D.K., 2005. Impact of growth hormone supplementation on adult height in Turner syndrome: Results of the canadian randomized controlled trial. Journal of Clinical Endocrinology and Metabolism. 90(6), pp. 3360-3366.
83. SUHAG, A. a BERGHELLA, V., 2013. Intrauterine Growth Restriction (IUGR): Etiology and Diagnosis. Current Obstetrics and Gynecology Reports. 2, pp. 102-11.
84. SUPERTI-FURGA, A., BONAFÉ, L., a RIMOIN, D.L., 2002. Molecular-pathogenetic classification of genetic disorders of the skeleton. American Journal of Medical Genetics. 106(4), pp. 283-293.
85. TOMPSON, S.W., et al., 2010. Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. American Journal of Human Genetics. 87(5), pp. 708-712.
86. VAN CAMP, G., et al., 2006. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. American journal of human genetics. 79(3), pp. 449-457.
87. VAN DER BURGT, I., 2007. Noonan syndrome. Orphanet Journal of Rare Diseases. 2, pp. 4-10.
88. VASQUES, G.A., et al., 2017. Long-term response to growth hormone therapy in a patient with short stature caused by a novel heterozygous mutation in NPR2. Journal of Pediatric Endocrinology and Metabolism. 30(1), pp. 111-116.
89. VASQUES, G.A., et al., 2013. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. Journal of Clinical Endocrinology and Metabolism. 98(10), pp. 1636-1644.
90. VASQUES, G.A., et al., 2018. IHH gene mutations causing short stature with nonspecific skeletal abnormalities and response to growth hormone therapy. Journal of Clinical Endocrinology and Metabolism. 103(2), pp. 604-614.
91. VOIGT, M., et al., 2006. Analyse des Neugeborenenkollektivs der Bundesrepublik Deutschland. Geburtshilfe und Frauenheilkunde. 66(10), pp. 956-970.
92. VUORISTO, M.M., et al., 2004. A stop codon mutation in COL11A2 induces exon skipping and leads to non-ocular stickler syndrome. American Journal of Medical Genetics. 130A(2), pp. 160-164.
93. WAKELING, E.L., et al., 2017. Diagnosis and management of Silver-Russell syndrome: First international consensus statement. Nature Reviews Endocrinology. 13(2), pp. 105-124.
94. WANG, S.R., et al., 2015. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. Human Mutation. 36(4), pp. 474-481.
95. WIT, J. M., KIESS, W. a MULLIS, P., 2011. Genetic evaluation of short stature. Best Practice and Research: Clinical Endocrinology and Metabolism. 99(9), pp. 3080-3092.
96. ZHANG, H., et al., 2015. A pilot study of gene testing of genetic bone dysplasia using targeted next-generation sequencing. Journal of Human Genetics. 60(12), pp. 769-776. 
13.
Předběžná náplň práce
Malý vzrůst patří mezi nejčastější poruchy, se kterými se dětský endokrinolog zabývá. Patofyziologické mechanismy vedoucí k růstové poruše jsou komplexní, jednoznačná příčina je ale většinou neznámá. Naše studie je první prací, která se komplexně zabývala etiopatogenezí familiárně malého vzrůstu (FSS). Cílem práce bylo pomocí metod sekvenování nové generace (NGS) objasnit monogenní příčinu poruchy růstu u skupiny rodin s FSS, a přispět tak k pochopení patofyziologických mechanismů vedoucích k této specifické růstové poruše, a následně u vybraných genetických diagnóz popsat fenotyp včetně odpovědi na léčbu GH. V rámci centra pro léčbu GH ve FN Motol jsme sestavili unikátní kohortu 98 rodin s FSS s jednoznačným vymezením výšky <-2 SD u dítěte před léčbou GH i menšího rodiče. Pomocí NGS byla etiologie FSS objasněna u 40/98 (41 %) rodin; 32/40 neslo geneticky podmíněnou poruchu růstové ploténky. V rámci kohorty byly nalezeny tři geneticky homogenní podskupiny rodin (porucha kolagenů růstové ploténky – 10/98 [10,2 %] rodin, deficit proteinu SHOX – 6/98 [6,1 %] rodin a porucha receptoru natriuretického peptidu typu C – 4/98 [4,1 %] rodin). Ve fenotypu všech podskupin dominovala růstová porucha bez výraznějších přidružených patologií. Popsali jsme nový fenotyp kolagenopatií růstové ploténky, jež byly doposud známy jen jako příčina syndromického malého vzrůstu. Navrhli jsme klinické prediktory pro monogenní formu FSS. U všech podskupin byla zjištěna dobrá odpověď na léčbu GH.
Předběžná náplň práce v anglickém jazyce
Short stature is one of the most common disorders followed-up by a paediatric endocrinologist. Pathophysiologic mechanisms leading to growth disorders are complex, however, the exact cause is mostly unknown. Our study is the first to evaluate the aetiopathogenesis of familial short stature (FSS). Using next-generation sequencing (NGS) techniques, we aimed to describe the monogenic aetiology of growth impairment in a group of FSS families, and therefore to elucidate mechanisms leading to this specific growth disorder. In selected genetic diagnoses, we additionally aimed to describe the phenotype including GH treatment response. Within Motol University Hospital centre for GH therapy, we formed a group of 98 FSS families with clear height definition in ≤-2 SD in both the child height before GH therapy and in his shorter parent. Using NGS, the FSS aetiology was elucidated in 40/98 (41%) families; 32/40 had a genetic growth plate disorder. Within the cohort, three genetically homogeneous subgroups of families were described (collagenopathies – 10/98 [10.2%] families, SHOX deficiency – 6/98 [6.1%] families, and C type natriuretic peptide receptor disorder – 4/98 [4.1%] families). Dominant phenotype in all the subgroups was the growth disorder without apparent associated pathologies. As mutations in growth plate collagen genes have previously been known only to cause syndromic short stature, a new phenotype has been revealed. Moreover, the clinical predictors for monogenic FSS have been proposed. All the subgroups responded well to GH treatment.
 
Univerzita Karlova | Informační systém UK