Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Slabá supratekutost jako nástroj pro přesná měření klasických a kvantových proudění hélia
Název práce v češtině: Slabá supratekutost jako nástroj pro přesná měření klasických a kvantových proudění hélia
Název v anglickém jazyce: Weak superfluidity employed for precision sensing of classical and quantum flows of helium
Klíčová slova: supratekuté hélium|Josephsonův spoj|kvantová interference|turbulence
Klíčová slova anglicky: superfluid helium|Josephson junction|quantum interference|turbulence
Akademický rok vypsání: 2024/2025
Typ práce: disertační práce
Jazyk práce:
Ústav: Katedra fyziky nízkých teplot (32-KFNT)
Vedoucí / školitel: doc. RNDr. David Schmoranzer, Ph.D.
Řešitel:
Zásady pro vypracování
Quantum interference has been first famously demonstrated by Josephson in superconductors, where it enabled hypersensitive detection of magnetic flux and its variations with precision limited only by quantum mechanics, forming the basis of SQUID devices, with immesurable applications today, both in physical research and in other areas such as medicine.

In superfluid helium, the same phenomenon exists due to the quantum nature of its flow, as explored theoretically by Anderson [1] and later leveraged for the construction of practical devices by Packard's group, see review [2]. Unlike superconductors, a helium SQUID (or SHeQUID) can serve as a precise measurement tool of minute differences in chemical potential of the fluid, including those induced by rotation, and these devices have been used with success to measure very slow rotational motion, such as that of the planet Earth. This has been sucessfully demosntrated using either stable isotope of helium: 3He and 4He.

In this work we will explore a novel construction and further possible uses of SHeQUID devices for the purposes of studying both laminar and turbulent flows of helium, driven either mechanically or thermally. As a supporting tool to investigate these flows, we will use NEMS mechanical resonators, similar to those discussed in Ref. [3] or later literature. We will also seek to integrate SHeQUID devices in on-chip fluidic circuits with the view to evaluate the feasibility of quantum computing using superfluid helium-4.

The work on this Thesis will entail thorough training in optical lithographic processes (with a possible use of e-beam lithography) and visits at foreign collaborating Universities.
Seznam odborné literatury
[1] P. W. Anderson, Considerations on the Flow of Superfluid Helium, Rev. Mod. Phys. 38, 298 (1966)
[2] R. E. Packard and Y. Sato, Superfluid helium quantum interference devices (SHeQUIDs): principles and performance, J. Phys.: Conf. Ser. 568 012015 (2014)
[3] M. Defoort, K.J. Lulla, C. Blanc, H. Ftouni, O. Bourgeois, E. Collin, Stressed Silicon Nitride Nanomechanical Resonators at Helium Temperatures, J. Low Temp. Phys. 171 (2013) 731

L.D. Landau, E.M. Lifshitz, Hydrodynamics
C.F. Barenghi, R.J. Donnelly, W.F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence, Springer Berlin (Heidelberg), 2001
 
Univerzita Karlova | Informační systém UK