Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Computation of stabilization parameters by deep learning
Název práce v češtině: Určení stabilizačních parametrů pomocí hlubokého učení
Název v anglickém jazyce: Computation of stabilization parameters by deep learning
Klíčová slova: konvektivně-dominantní úloha|metoda konečných prvků|stabilizovaná metoda|stabilizační parametr|hluboké učení|neuronová síť|PINN|numerická studie
Klíčová slova anglicky: convection-dominated problem|finite element method|stabilized method|stabilization parameter|deep learning|neural network|PINN|numerical study
Akademický rok vypsání: 2022/2023
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Katedra numerické matematiky (32-KNM)
Vedoucí / školitel: doc. Mgr. Petr Knobloch, Dr., DSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 07.09.2023
Datum zadání: 07.09.2023
Datum potvrzení stud. oddělením: 03.10.2023
Zásady pro vypracování
The scalar steady-state convection-diffusion-reaction equation represents an important model problem for developing and analyzing numerical methods for many more complicated mathematical models. In the challenging case of small diffusion, a widely used class of numerical methods for the mentioned equation are stabilized finite element methods. These methods contain stabilization parameters which are difficult to define in an optimal way. The aim of the thesis is to develop techniques that compute stabilization parameters by applying deep learning. This will lead to a cheap numerical method for which time-consuming approaches like nonlinear algebraic flux correction will be used only for training the considered neural networks. One should study various types of neural networks and different training strategies, compare them by extensive numerical studies, and propose their extensions to other classes of problems.
Seznam odborné literatury
I. Brevis, I. Muga, and K.G. van der Zee. Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights. Comput. Methods Appl. Mech. Engrg., 402:Paper No. 115716, 2022.

N. Discacciati, J.S. Hesthaven, and D. Ray. Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity tuned by neural networks. J. Comput. Phys., 409:109304, 2020.

D. Frerichs-Mihov, L. Henning, and V. John. Using deep neural networks for detecting spurious oscillations in discontinuous Galerkin solutions of convection-dominated convection-diffusion equations. Preprint 2986, WIAS, 2022. Submitted.

V. John and P. Knobloch. On algebraically stabilized schemes for convection–diffusion–reaction problems. Numer. Math., 152(3):553–585, 2022.

S.M. Joshi, T. Anandh, B. Teja, and S. Ganesan. On the choice of hyper-parameters of artificial neural networks for stabilized finite element schemes. Int. J. Adv. Eng. Sci. Appl. Math., 13:278–297, 2020.

G. Kutyniok and P. Grohs, editors. Mathematical Aspects of Deep Learning. Cambridge University Press, Cambridge, 2022.

H.G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for singularly perturbed differenial equations. Convection-diffusion-reaction and flow problems. Springer-Verlag, Berlin, 2008.

S. Yadav and S. Ganesan. SPDE-Net: Neural network based prediction of stabilization parameter for SUPG technique. In Proceedings of the 13th Asian Conference on Machine Learning, PMLR 157, pp. 268–283, 2021.

S. Yadav and S. Ganesan. AI-augmented stabilized finite element method. 2022, https://arxiv.org/abs/2211.13418.
 
Univerzita Karlova | Informační systém UK