Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Strojové učení v kosmické fyzice
Název práce v češtině: Strojové učení v kosmické fyzice
Název v anglickém jazyce: Machine learning in space physics
Akademický rok vypsání: 2021/2022
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Katedra fyziky povrchů a plazmatu (32-KFPP)
Vedoucí / školitel: prof. RNDr. František Němec, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 28.07.2021
Datum zadání: 28.07.2021
Datum potvrzení stud. oddělením: 15.09.2021
Konzultanti: Gilbert Pi, Ph.D.
Zásady pro vypracování
The number of spacecraft and the amount of available data relevant for space physics studies increase tremendously in recent years. Automated ways of extraction of useful scientific information from big data volumes thus become a question of the utmost importance, which is the reason why machine learning algorithms are becoming more and more popular in the space physics field.
The aim of the thesis is to use machine learning techniques (neural networks, in particular) to analyze selected spacecraft data sets. A special focus will be on modeling significant plasma boundaries in space (bow shock, magnetopause, plasmapause). These are readily identifiable in the data as sudden specific changes of measured plasma parameters (density, flow velocity, magnetic field), and they are typically described by empirical models following prescribed shape/distance formulas. Machine learning techniques should allow not only to automatically identify the respective plasma regions and boundary crossings, but also to model the boundary locations themselves without the need for additional a priori assumptions. The evaluation of parameters controlling the shape and location of the derived model boundaries will then allow to improve our understanding of factors controlling the boundaries.
Seznam odborné literatury
1) M. G. Kivelson, C. T. Russell: Introduction to Space Physics. University Press, Cambridge, 1995.
2) E. Camporeale, J. Johnson, S. Wing: Machine Learning Techniques for Space Weather. Elsevier, Radarweg, 2018.
3) Q. Zong, P. Escoubet, D. Sibeck, G. Le, H. Zhang: Dayside Magnetosphere Interactions. AGU, Geophysical Monograph Series, 2020.
4) Papers in scientific journals recommended by the thesis supervisor.
Předběžná náplň práce v anglickém jazyce
The number of spacecraft and the amount of available data relevant for space physics studies increase tremendously in recent years. Automated ways of extraction of useful scientific information from big data volumes thus become a question of the utmost importance, which is the reason why machine learning algorithms are becoming more and more popular in the space physics field.
The aim of the thesis is to use machine learning techniques (neural networks, in particular) to analyze selected spacecraft data sets. A special focus will be on modeling significant plasma boundaries in space (bow shock, magnetopause, plasmapause). These are readily identifiable in the data as sudden specific changes of measured plasma parameters (density, flow velocity, magnetic field), and they are typically described by empirical models following prescribed shape/distance formulas. Machine learning techniques should allow not only to automatically identify the respective plasma regions and boundary crossings, but also to model the boundary locations themselves without the need for additional a priori assumptions. The evaluation of parameters controlling the shape and location of the derived model boundaries will then allow to improve our understanding of factors controlling the boundaries.
 
Univerzita Karlova | Informační systém UK